Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-9th95 Total loading time: 0.511 Render date: 2022-12-04T13:41:36.539Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Porewater in Compacted Water-Saturated MX-80 Bentonite

Published online by Cambridge University Press:  28 March 2012

Torbjörn Carlsson
Affiliation:
VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland.
Arto Muurinen
Affiliation:
VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland.
Michał Matusewicz
Affiliation:
VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland.
Andrew Root
Affiliation:
MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland.
Get access

Abstract

Bentonite is planned to be used in many countries as a buffer material in repositories for spent nuclear fuel. The proper understanding and modelling of the functioning of the water-saturated bentonite requires knowledge about the bentonite microstructure and also the way water is distributed between different phases. This paper presents experimental results from our studies of water in compacted, water-saturated MX-80 bentonite at dry densities in the range 0.7-1.6 g/cm3. Three techniques, Cl-porosity, SAXS and proton NMR measurements, were applied to samples kept at room temperature, while TEM imaging was applied to high pressure frozen samples. The combined results of these techniques strongly indicate that the two major water phases in the compacted MX-80 bentonite samples are ‘interlayer’ and ‘non-interlayer’ water. The results of the relative amounts of different water types by SAXS and NMR are very similar. The results by Cl-porosity measurement indicate that only part of the non-interlayer water is available for anions. Those observations are discussed in comparison to TEM micrographs. Our study provides solid experimental evidence for the presence of two major water phases in water-saturated bentonite and estimates their relative proportions and pore sizes.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. SKB. SKB TR-10-12, Stockholm, Sweden (2010).Google Scholar
2. Posiva. TKS-2009, Eurajoki, Finland (2010).Google Scholar
3. Holmboe, M.. Doctoral Thesis, Royal Institute of Technology , Stockholm, Sweden (2011).Google Scholar
4. Kozaki, T., Inada, K., Sato, S., Ohashi, H.. J. Contam. Hydrol., 47(2–4), 159170 (2001).10.1016/S0169-7722(00)00146-7CrossRefGoogle Scholar
5. Bourg, I.C., Bourg, A.C.M., Sposito, G., J. Contam. Hydrol., 61(1–4), 293302 (2003).10.1016/S0169-7722(02)00128-6CrossRefGoogle Scholar
6. Muurinen, A., Karnland, O., Lehikoinen, J., Phys. Chem. Earth, Parts A/B/C, 29(1), 119127 (2004).10.1016/j.pce.2003.11.004CrossRefGoogle Scholar
7. Suzuki, S., Sato, H., Ishidera, T., Fujii, N., J. Contam. Hydrol., 68(1–2), 2337 (2004).10.1016/S0169-7722(03)00139-6CrossRefGoogle Scholar
8. Wersin, P., Curti, E., Appelo, C.A.J., Appl. Clay Sci., 26(1–4), 249257 (2004).10.1016/j.clay.2003.12.010CrossRefGoogle Scholar
9. Van Loon, L., Glaus, M., Muller, W., Appl. Geochem., 22(11), 25362552 (2007).10.1016/j.apgeochem.2007.07.008CrossRefGoogle Scholar
10. Muurinen, A.. Posiva Working Report 2009-42 (2009).Google Scholar
11. Pusch, R., Karnland, O., Hökmark, H., SKB TR-90–43 (1990).Google Scholar
12. Ohkubo, T., Kikuchi, H., Yamaguchi, M., Phys. Chem. Earth 33, S169S176 (2008).10.1016/j.pce.2008.10.042CrossRefGoogle Scholar
13. Montavon, G., Guo, Z., Tournassat, C., Grambow, B., Le Botlan, D., Geochim. Cosmochim. Acta 73, 72907302 (2009).10.1016/j.gca.2009.09.014CrossRefGoogle Scholar
14. Tournassat, C., Appelo Geochim, C.A.J.. Cosmochim. Acta 75, 36983710 (2011).10.1016/j.gca.2011.04.001CrossRefGoogle Scholar
15. Farrar, T. C., Becker, E.D., Pulse and Fourier Transform NMR: Introduction to Theory and Methods , Academic Press, New York (1971).Google Scholar
16. Waugh, J.S., Wang, C.H.. Phys. Rev., 162, 209216 (1967).10.1103/PhysRev.162.209CrossRefGoogle Scholar
17. Santyr, G.E., Henkelman, R.M., Bronskill, M.J., J. Magn. Reson. 79, 2844 (1988).Google Scholar
19. Studer, D., Graber, W.; Al-Amoudi, A., Eggli, P., J. Microsc., 203, 285294 (2001).10.1046/j.1365-2818.2001.00919.xCrossRefGoogle Scholar
20. Abramoff, M. D., Magalhaes, P. J., Ram, S. J., Biophotonics International, 11, 3642 (2004).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Porewater in Compacted Water-Saturated MX-80 Bentonite
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Porewater in Compacted Water-Saturated MX-80 Bentonite
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Porewater in Compacted Water-Saturated MX-80 Bentonite
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *