Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T11:36:52.119Z Has data issue: false hasContentIssue false

Polaron Pair Dissociation and Polaron Recombination in Polymer: Fullerene Solar Cells

Published online by Cambridge University Press:  01 February 2011

Carsten Deibel
Affiliation:
deibel@physik.uni-wuerzburg.de, Julius-Maximilians-University of Wurzburg, Experimental Physics VI, Am Hubland, Wurzburg, 97074, Germany
Andreas Baumann
Affiliation:
andreas.baumann@physik.uni-wuerzburg.de, Julius-Maximilians-University of Wurzburg, Experimental Physics VI, Am Hubland, Wurzburg, 97074, Germany
Jens Lorrmann
Affiliation:
jens.lorrmann@physik.uni-wuerzburg.de, Julius-Maximilians-University of Wurzburg, Experimental Physics VI, Am Hubland, Wurzburg, 97074, Germany
Vladimir Dyakonov
Affiliation:
dyakonov@physik.uni-wuerzburg.de, Julius-Maximilians-University of Wurzburg, Experimental Physics VI, Am Hubland, Wurzburg, 97074, Germany
Get access

Abstract

In polymer:fullerene solar cells, the field-dependent photocurrent is due to a combination of polaron pair dissociation, competing with monomolecular recombination, and bimolecular recombination. We compare of the experimental photocurrent of P3HT:PCBM bulk heterojunction solar cells to Monte Carlo simulations of bilayer and bulk heterojunction devices. The shape of the photocurrent can be reproduced, the high quantum yield, however, cannot be explained with help of the simulations. In order to analyse the dominant experimental recombination mechanism, we apply the photo-CELIV technique. Our data can be fitted with bimolecular recombination, but only if a reduced Langevin recombination factor is assumed. Thermalisation is accounted for by measuring the time-dependent charge carrier mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brabec, C. J., Dyakonov, V., Parisi, J., and Sariciftci, N. S., eds., Organic Photovoltaics (Springer, Berlin, 2003)10.1007/978-3-662-05187-0Google Scholar
2. Hoppe, H. and Sariciftci, N. S., J. Mater. Res. 19, 1924 (2004)10.1557/JMR.2004.0252Google Scholar
3. Peumans, P. and Forrest, S. R., Chem. Phys. Lett. 398, 27 (2004)10.1016/j.cplett.2004.09.030Google Scholar
4. Wohlgenannt, M., Phys. Stat. Sol. A 201, 1188 (2004)10.1002/pssa.200404331Google Scholar
5. Mozer, A. J., Dennler, G., Sariciftci, N. S., Westerling, M., Pivrikas, A., österbacka, R., and Juska, G., Phys. Rev. B 72, 035217 (2005)Google Scholar
6. Juska, G., Arlauskas, K., and Viliunas, M., and Kocka, J., Phys. Rev. Lett. 84, 4946 (2000)10.1103/PhysRevLett.84.4946Google Scholar
7. Arkhipov, V. I., Heremans, P., and Bässler, H., Appl. Phys. Lett. 82, 4605 (2003)10.1063/1.1586456Google Scholar
8. Offermans, T., Meskers, S. C. J., Janssen, R. A. J., Chem. Phys. 308, 125 (2005)10.1016/j.chemphys.2004.08.015Google Scholar