Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.174 Render date: 2021-12-01T04:31:14.758Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Polarized Induced Magnetic Broadening of Photonic Activities in Fe3 O 4-Elastomer Composites

Published online by Cambridge University Press:  29 April 2013

Danhao Ma
Affiliation:
Department of Energy Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Dustin T. Hess
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Pralav P Shetty
Affiliation:
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Kofi W. Adu
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A. Department of Physics, The Pennsylvania State University, Altoona, PA 16601, U.S.A.
Richard Bell
Affiliation:
Department of Chemistry, The Pennsylvania State University, Altoona, PA 16601, U.S.A.
Mauricio Terrones
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Get access

Abstract

We report a systematic study of polarization and magnetic field effects on the optical response of Fe3O4-silicone elastomer composite. The Fe3O4 particles were aligned in a silicone elastomer matrix with an external static magnetic field. Films of composites containing 5wt% of 20nm ≤ d ≤ 30nm Fe3O4 particles aligned in- and out-of-plane in the elastomer host were prepared. The optical spectra of the films were measured with the Perkin-Elmer Lambda 950 UV/vis/NIR spectrometer. We observed a systematic redshift in the optical response of the outof-plane composite films with increasing static magnetic field strength, which saturated near 600 Gauss. We obtained a maximum redshift of ∼46 nm at 600 Gauss. The observed redshift in the optical response of the out-of-plane composite film is attributed to the effect of the magnetic field. This facilitated the formation of the highly aligned particles that induced strong electric dipole in the aligned particles. Interestingly, there were no observable shifts with increasing magnetic field strength in the in-plane films, suggesting that the orientation (polarization) of the magnetic dipole and the induced electric dipole play a crucial role in the optical response.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Di Ventra, M., Evoy, S., and Heflin, J. R. Jr., Introduction to nanoscale Science and Technology, Kluwer Academic Publisher, Boston ( 2004)CrossRefGoogle Scholar
Xia, Y. N., and Halas, N. J., MRS Bulletin, 30, 338 (2005)CrossRef
Hutter, E., and Fendler, J.H., Advanced Materials, 16, 1685 (2004)CrossRef
Novak, J.P., Brousseau, L.C., Vance, F.W., Johnson, R.C., Lemon, B.I., Hupp, J.T., and Feldheim, D.L., Journal of the American Chemical Society, 122(48), 12029 (2000)CrossRef
Vanduyne, R.P., Hulteen, J.C., and Treichel, D.A., Journal of Chemical Physics, 99(3), 2101 (1993)CrossRef
Ekardt, W., Physical Review B, 31(10), 6360 (1985)CrossRef
Bohren, C., and Huffmann, D., Absorption and Scattering of Light by Small Particles, Wiley, New York ( 1988)Google Scholar
Jensen, T.R., Duval, M.L., Kelly, K.L., Lazarides, A.A., Schatz, G.C., and Van Duyne, R.P., Journal of Physical Chemistry B, 103(45), 9846 (1999)CrossRef
Felidj, N., Aubard, J., and Levi, G., Journal of Chemical Physics, 111(3), 1195 (1999)CrossRef
Diest, K., Dionne, J.A., Spain, M., and H.A, Nano Letters, 9(7), 2579 (2009)CrossRef
Krasavin, A.V., and Zheludev, N.I., Applied Physics Letters, 84(8), 1416 (2004)CrossRef
Wallis, R.F., Brion, J.J., Burstein, E., and Hartstein, A., Physical Review B, 9(8), 3424 (1974)CrossRef
Yu, Z.F., Veronis, G., Wang, Z., and Fan, S.H., Physical Review Letters, 100(2), (2008)
Belotelov, V.I., Bykov, D.A., Doskolovich, L.L., Kalish, A.N., and Zvezdin, A.K., Journal of the Optical Society of America B-Optical Physics, 26(8), 1594 (2009)CrossRef
Pacifici, D., Lezec, H.J., Atwater, H.A., and Weiner, J., Physical Review B, 77(11), (2008)CrossRef
Ge, J., Lee, H., He, L., Kim, J., Lu, Z., Kim, H., Goebl, J., Kwon, S. and Yin, Y., J. Am. Chem. Soc., 131, 15687 (2009)CrossRef
Kuai, S.-L., Bader, G. and Ashrit, P. V., Appl. Phys. Lett., 86, 221110 (2005)CrossRef
Pevtsov, A. B., Kurdyukov, D. A., Golubev, V. G., Akimov, A. V., Meluchev, A. A., Sel’kin, A. V., Kaplyanskii, A. A., Yakovlev, D. R. and Bayer, M., Phys. Rev. B, 75, 153101 (2007)CrossRef
Ji, Z., Sun, C. Q., Pita, K., Lam, Y. L., Zhou, Y., Ng, S. L., Kam, C. H., Li, L. T. and Gui, Z. L., Appl. Phys. Lett., 78, 661 (2001)
Ge, J., Hu, Y. and Yin, Y., Angew. Chem. Int. Ed., 46, 7428 (2007)CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Polarized Induced Magnetic Broadening of Photonic Activities in Fe3 O 4-Elastomer Composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Polarized Induced Magnetic Broadening of Photonic Activities in Fe3 O 4-Elastomer Composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Polarized Induced Magnetic Broadening of Photonic Activities in Fe3 O 4-Elastomer Composites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *