Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-lxvzl Total loading time: 0.356 Render date: 2022-01-22T15:52:58.601Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Photoreflectance and Resonant Raman Scattering in Short Period Si/Ge Superlattices on Ge (001) and Si (001)

Published online by Cambridge University Press:  22 February 2011

U. Menczigar
Affiliation:
Walter Schottky Institut, TU München, 8046 Garching, Germany.
K. Eberl
Affiliation:
IBM, T. J. Watson Research Center, Yorktown Heights, NY.
G. Abstreiter
Affiliation:
Walter Schottky Institut, TU München, 8046 Garching, Germany.
Get access

Abstract

Short period Si/Ge superlattices have been grown on Ge (001) and Si (001) substrates by molecular beam epitaxy. The optical properties of the superlattices have been studied with photoreflectance. (PR) and resonant Raman scattering (RRS). With PR we are able to observe new, structural induced transitions for all superlattices which are related to E0-and E1-like gaps. The analysis of PR spectra is complicated by an optical etalon effect if the samples are sufficently thick. The E1-like transitions in the range between 1.9eV and 2.7eV are also studied with RRS. Due to the confinement of the optical phonons in the Ge and Si layers RRS is able to probe the bandstructure in each layer seperately. Localized electronic states in the Ge layers can be observed with RRS for a Si4Ge18 superlattice and are compared with PR measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for instance, Pearsall, T. P., Crit. Rev. of Solid State and Material Sci., 15, 551 (1989).CrossRefGoogle Scholar
2. Gnutzmann, U. and Clausecker, K., Appl. Phys. 3, 9 (1974).CrossRefGoogle Scholar
3. Bevk, J., Ourmazd, A., Feldman, L. C., Pearsall, T. P., Bonar, J. M., Davidson, B. A., Maennaerts, J. P., Appl. Phys. Lett. 50, 760 (1987).CrossRefGoogle Scholar
4. Eberl, K., Krötz, G., Zachai, R., and Abstreiter, G., J. de Physique, C5, 329 (1987).Google Scholar
5. Kasper, E., Kibbel, H., Jorke, H., Brugger, H., Friess, E., and Abstreiter, G., Phys. Rev. B 38 3599 (1988).CrossRefGoogle Scholar
6. Pearsall, T. P., Bevk, J., Feldman, L., Bonar, J. M., Maennaerts, J. P., Phys. Rev. Lett. 58, 729 (1986).CrossRefGoogle Scholar
7. Hybertson, M. S. and Schlüter, M., Phys. Rev. B 36, 9683 (1987).CrossRefGoogle Scholar
8. Satpathy, S., Martin, R. M., and van de Walle, C. G., Phys. Rev. B 38, 13237 (1988).CrossRefGoogle Scholar
9. Gell, M., Phys. Rev. B 40, 1966 (1989), and Appl. Phys. Lett. 55, 484 (1989).CrossRefGoogle Scholar
10. Turton, R. and Jaros, M., Appl. Phys. Lett. 56, 1342 (1999).Google Scholar
Turton, R. and Jaros, M., to be published in Materials Science and EngineeringGoogle Scholar
11. Schmid, U., Lukes, F., Christensen, N. E., Alouani, M., Cardona, M., Kasper, E., Kibbel, H., and Presting, H., Phys. Rev. Lett. 65, 1933 (1990).CrossRefGoogle Scholar
Schmid, U., Christensen, N. E., Alouani, M., and Cardona, M., submitted for publication.Google Scholar
12. Pearsall, T. P., Bevk, J., Bean, J. C., Bonar, J., Maennaerts, J. P., and Ourmatd, A., Phys. Rev. B 39, 3731 (1989).CrossRefGoogle Scholar
Pearsall, T. P., Vandenberg, J. M., Hull, R., and Bonar, J. M., Phys. Rev. Lett. 63, 2104 (1989).CrossRefGoogle Scholar
13. Asami, K., Miki, K., Sakamoto, K., and Gonda, S., Jpn. J. Appl. Phys. 29, L381 (1990).CrossRefGoogle Scholar
14. Dafesh, P. A., Arbet, V., and Wang, K. L., Appl. Phys. Lett. 56, 1498 (1990).CrossRefGoogle Scholar
15. Churchill, A. C., CKlipstein, P., Gibbins, C. J., Gell, M. A., Jones, M. E., and Tuppen, C. G., Semicond. Sci. Technol. 6, 18 (1991).CrossRefGoogle Scholar
16. Gell, M. A., Herman, M. H., Ward, I. D., Gibbings, C. J., Jones, M. E., Tuppen, C. G., Churchill, A. C., and Klipstein, P. C., Vacuum 41, 947 (1990).CrossRefGoogle Scholar
17. Cerdeira, F., Alonso, M. I., Niles, D., Garriga, M., Cardona, M., Kasper, E., and Kibbel, H., Phys. Rev. B 40, 1361 (1989).CrossRefGoogle Scholar
18. Eberl, K., Wegscheider, W., and Abstreiter, G., J. Crys. Growth, in press.Google Scholar
19. Aspnes, D. E. in Handbook on Semiconductors, Vol.2, ed. by Moss, T.S., (North Holland, New York, 1988), pp.109.Google Scholar
20. Pollak, F. H. and Glembocki, O. J., SPIE, 946 (1988).Google Scholar
21. Cardona, M. in Light Scattering in Solids II, ed. by Cardona, M. and Güntherodt, G. (Springer, New York, 1982) pp. 19178.CrossRefGoogle Scholar
22. Jusserand, M. and Cardona, M. in Light Scattering in Solids V, ed. by Cardona, M. and Güntherodt, G. (Springer, New York, 1989), pp. 49152.CrossRefGoogle Scholar
23. Renucci, M. A., Renucci, J. B., and Cardona, M. in Proc, of 2nd Int. Conf. on Light Scattering in Solids, ed. by Balkanski, M., Flammarion, Paris 1971, p. 326.Google Scholar
24. Kline, J. S., Pollak, F. H., and Cardona, M., Helv. Phys. Acta 41, 968 (1968).Google Scholar
25. Friess, E., Eberl, K., Menczigar, U., and Abstreiter, G., Solid State Commun. 73, 203 (1990).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photoreflectance and Resonant Raman Scattering in Short Period Si/Ge Superlattices on Ge (001) and Si (001)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Photoreflectance and Resonant Raman Scattering in Short Period Si/Ge Superlattices on Ge (001) and Si (001)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Photoreflectance and Resonant Raman Scattering in Short Period Si/Ge Superlattices on Ge (001) and Si (001)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *