Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-9jk85 Total loading time: 0.22 Render date: 2022-12-09T17:35:12.121Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Photoluminescence Properties of Mn-doped Zinc Silicates Synthesized by Combinatorial Sputtering Technique

Published online by Cambridge University Press:  26 February 2011

Lih-Ping Wang
Affiliation:
iriswang@itri.org.tw, ITRI-URL, Rm.141 bldg. 67, 195 sect.Chuhsin Rd., Chutunhg, Hsicnchu, N/A, N/A, Taiwan
Wen-Hsuan Chao
Affiliation:
whchao@itri.org.tw, ITRI-UCL, Taiwan
Shu-Huei Wang
Affiliation:
sandywang@itri.org.tw, ITRI-UCL, Taiwan
Tien-Heng Huang
Affiliation:
Tomhuang@itri.org.tw, ITRI-UCL, Taiwan
Ren-Jye Wu
Affiliation:
rjwu@itri.org.tw, ITRI-UCL, Taiwan
Get access

Abstract

The photoluminescence (PL) properties of Mn-doped zinc silicates were studied by combinatorial synthesis and characterization technique associated with various process parameters. The material libraries were prepared with composition spreading in Zn and Mn concentration. The PL emission was green or orange, and depended strongly on the stoichiometry of the zinc silicates and the annealing temperature. The orange emission was observed in Mn-doped zinc silicates annealed at 800°C, which attributed to the increase of crystal field in a highly non-stoichiometric α-Zn2SiO phase ((Zn+Mn)/Si <1).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morell, A. and Khiati, N. El, J. Electrochem. Soc. 140, 2019X 2021 (1993).CrossRefGoogle Scholar
2. Robbins, D.J., Caswell, N.S., Avouris, P., Giess, E.A., Chang, I.F., and Dove, D.B., J. Electrochem. Soc. 132, 2784X 2793(1985).CrossRefGoogle Scholar
3. Chang, I.F., Brownlow, J.W., Sun, T.I., and Wilson, J.S., J. Electrochem. Soc. 136, 3532X 3535 (1989).Google Scholar
4. Thilulouse, P., Giess, E.A., and Chang, I.F., J. Appl. Phys. 53, 9015X 9020 (1982).Google Scholar
5. Barthou, C., Benoit, J., Pnalloulj, P., and Morell, A., J. Electrochem. Soc. 141, 524X 529 (1994).CrossRefGoogle Scholar
6. Kamiya, S. and Mizuno, H. in Phosphor Handbook, edited by Shionoya, S. and Yen, W.M., p.410 (CRC Press, 1998).Google Scholar
7. Blasse, G. and Grabmaier, B.C., Luminescent Materials (Springer-Verlag, 1994), p52.CrossRefGoogle Scholar
8. Leverenz, H.W. and Seitz, F., J. Appl. Phys. 10, 479493 (1939).CrossRefGoogle Scholar
9. Rooksby, H.P. and McKeag, A.H., Trans. Faraday Soc. 37, 308311 (1941).CrossRefGoogle Scholar
10. Taghavinia, N., Lerondel, G., Makino, H., Yamamoto, A., Yao, T., Kawazoe, Y. and Goto, T., J. Gryst. Growth 237, 869873 (2002).CrossRefGoogle Scholar
11. Li, B., Zhou, J., Zong, R., Li, L. and Li, Q., Proc. 3rd China Intl. Conf. High-Performance Ceramics (CICC-3) (Shenzhen, China, May 9-12, 2004 ), 1986.Google Scholar
12. in High Performance Ceramic Conference (Mainland China, 2004).Google Scholar
13. Sun, X.-D., Gao, C., Wang, J., and Xiang, X.-D., Appl. Phys. Lett. 70, 3553 (1997).Google Scholar
14. Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J.H., Haushalter, R.C., McFarland, E.W., Poojary, D.M., Reaves, C.M., Weinberg, W.H., Wu, X.D., Science 279, 837839, 1998.CrossRefGoogle Scholar
15. Mordkovish, V.Z., Jin, Z., Yamada, Y., Fukumura, T., Kawasaki, M., Koinuma, H., Solid Stat. Science 4, 779782 (2002).CrossRefGoogle Scholar
16. Lee, S. and Seo, S.Y., J. Electrochem. Soc. 149, J85X J88 (2002).Google Scholar
17. Sohn, K.-S.. Seo, S.Y., Park, H.D., Electrochem. Sol. Stat. Lett. 4(10), H26–H29 (2001).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photoluminescence Properties of Mn-doped Zinc Silicates Synthesized by Combinatorial Sputtering Technique
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Photoluminescence Properties of Mn-doped Zinc Silicates Synthesized by Combinatorial Sputtering Technique
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Photoluminescence Properties of Mn-doped Zinc Silicates Synthesized by Combinatorial Sputtering Technique
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *