Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-85hf2 Total loading time: 0.199 Render date: 2021-09-27T20:58:21.157Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Photoemission Spectroscopy of Oxide Interfaces

Published online by Cambridge University Press:  12 July 2019

Atsushi Fujimori*
Affiliation:
University of Tokyo
Get access

Abstract

Format

This is a copy of the slides presented at the meeting but not formally written up for the volume.

Abstract

MBE growth of transition-metal oxide thin films using the pulsed laser deposition (PLD) technique has opened up new opportunities in the electronic structure studies of correlated systems using photoemission spectroscopy [1]. In this talk, I will present the results of photoemission studies on interfaces between a band insulator and a Mott insulator. In SrTiO3/LaTiO3 superlattices [2], metallic states were observed and systematic spectral weight transfer between the coherent part and incoherent part of the Ti 3d band was found to take place [3] as inferred from the electron-energy-loss spectroscopy study [4] and predicted theoretically [5]. For TiO2/VO2 interfaces, on the contrary, no metallic state was observed when VO2 was in the low-temperature insulating phase. The different behaviours are attributed to the absence of polarity discontinuity at the interface:electronic reconstruction;occurs at the polarity-discontinuous SrTiO3/LaTiO3 interface and does not at the polarity-continuous TiO2/VO2 interface. In entirely polar heterostructures LaAlO3/LaTiO3 [6] and LaAlO3/LaVO3 [7], soft x-ray and hard x-ray core-level photoemission measurements revealed that the Ti and V valences change at the topmost layers of the interfaces, suggesting electronic reconstruction competing with chemical reconstruction. This work was done in collaboration with M. Takizawa, H. Wadati, K. Maekawa, A. Chikamatsu, S. Minohara, A. Maniwa, H. Kumigashira, M. Oshima, M. Kawasaki, H. Koinuma, Y. Takata, K. Horiba, M. Matsunami, S. Shin, M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, T. Isikawa, K. Shibuya, M. Lippmaa, Y. Nagao, Y. Muraoka, Z. Hiroi, Y. Hotta, T. Susaki, H.Y. Hwang, G.W.J. Hassink, and G. Rijnders. References [1] K. Horiba et al., Rev. Sci. Instr. 74, 3406 (2003). [2] K. Shibuya et al., Jpn. J. Appl. Phys. 43, L1178 (2004). [3] M. Takizawa et al., Phys. Rev. Lett.; 97, 057601 (2006). [4] A. Ohtomo, D.A. Muller, J.L. Grazul and H.Y. Hwang, Nature 419, 378 (2002). [5] S. Okamoto and A.J. Millis, Nature 428, 630 (2004); Phys. Rev. B 70, 241104 (2004). [6] G.W.J. Hassink et al., to be submitted. [7] Y. Hotta et al., submitted to Appl. Phys. Lett.

Type
Slide Presentations
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photoemission Spectroscopy of Oxide Interfaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Photoemission Spectroscopy of Oxide Interfaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Photoemission Spectroscopy of Oxide Interfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *