Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-p9qdq Total loading time: 0.253 Render date: 2021-10-26T02:07:31.065Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Photoelectric Response from Nanofibous Membranes

Published online by Cambridge University Press:  15 March 2011

Kris J. Senecal
Affiliation:
U.S. Army SBCCOM, NSC Materials Science Team, Kansas Street Natick, MA 01760
David P. Ziegler
Affiliation:
U.S. Army SBCCOM, NSC Materials Science Team, Kansas Street Natick, MA 01760
Jinan He
Affiliation:
Depts. of Chemistry and Physics, Center for Advanced Materials, University of Massachusetts- Lowell Lowell, MA 01854
Ravi Mosurkal
Affiliation:
Depts. of Chemistry and Physics, Center for Advanced Materials, University of Massachusetts- Lowell Lowell, MA 01854
Heidi Schreuder-Gibson
Affiliation:
U.S. Army SBCCOM, NSC Materials Science Team, Kansas Street Natick, MA 01760
Lynne A. Samuelson
Affiliation:
U.S. Army SBCCOM, NSC Materials Science Team, Kansas Street Natick, MA 01760
Get access

Abstract

Electrospinning has been used to prepare nanofibrous composite membranes of semi-conducting particles (TiO2) and photovoltaic dyes. Electrospinning is a relatively simple technique where electrical forces are used on polymeric solutions to produce nanoscale fibers. The resulting nanofibrous membranes have surface areas that are roughly one to two orders of magnitude higher than conventional thin films. It is believed that this higher surface will allow for more efficient light harvesting in photovoltaic devices. Our research has focused on the fabrication of organic/inorganic hybrid solar cells featuring dye sensitized nanocrystalline semiconductor particles using electrospinning. Phthalocyanine and N3 (cisdi(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II)) photoactive dyes were electrospun with semi-conductive TiO2 nanoparticles into a matrix polymer, polyacrylonitrile (PAN). Electron microscopy and elemental analysis of the electrospun membranes shows that each component is present and uniformly dispersed in the nanofibrous membranes. In general, the dye membranes electrospun with the TiO2 nanoparticles exhibited a greater photoelectric response than the membranes with dye only. The N3 dye membranes however showed the greatest photoresponse in comparison to the phthalocyanine dyes, with or without the TiO2 nanoparticles. Photoelectric responses on the order of 30 μA and 280 mV were achieved with dye-sensitized membranes and are believed to be the first demonstration of a photoelectric response from an electrospun nanofibrous membrane.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reneker, D. H. and Chun, I., Nanotechnology 7(3), 216 (1996).CrossRefGoogle Scholar
2. Doshi, J., and Reneker, D.H., J. Electrost. 35(2&3), 151 (1995).CrossRefGoogle Scholar
3. Srinivasan, G., and Reneker, D.H., Polym. Int. 36(2), 195 (1995).CrossRefGoogle Scholar
4. Dzenis, Y.A., and Reneker, D.H., Proc Am. Soc. Comp. Tech Conf. 9th , 657 (1994).Google Scholar
5. Gratzel, M., MRS Bull. 18(10), 61 (1993).Google Scholar
6. Gratzel, M., Prog. Photovoltaics 8(1), 171 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
7. Kalyanasundaram, K. and Gratzel, M., Optoelectronic Properties of Inorganic Compounds, (Plenum Press, New York and London, 1998) p. 169.Google Scholar
8. Rothenberger, G., Comte, P., and Gratzel, M., Sol. Energy Mater. Sol. Cells 58(3), 321 (1999).CrossRefGoogle Scholar
9. Rudiono, F., and Takeuchi, M., Applied Surface Science 142, (1-4) 598 (1999).CrossRefGoogle Scholar
10. Wesphalen, K., Rostalski, U., Luth, H., and Meissner, D., Sol. Energy Mater. Sol. Cells 61, 97 (2000).CrossRefGoogle Scholar
11. Kume, T., Hayashi, S., Ohkuma, H., Yamamoto, K., Jpn. J. Appl. Phys., Part 1 34(12A), 6448 (1995).CrossRefGoogle Scholar
12. Minami, N., Sasaki, K., Tsuda, K, J.Appl.Phys. 54(11), 6764 (1983).CrossRefGoogle Scholar
13. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., and Gratzel, M., J. Am.Chem.Soc. 115, 6382 (1993).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photoelectric Response from Nanofibous Membranes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Photoelectric Response from Nanofibous Membranes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Photoelectric Response from Nanofibous Membranes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *