Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-18T08:13:01.575Z Has data issue: false hasContentIssue false

PEG-Assisted Hydrothermal Synthesis and Photocatalytic Activity of Bi2Fe4O9 Crystallites

Published online by Cambridge University Press:  14 March 2011

Dengrong Cai
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China Corresponding E-mail: jrcheng@staff.shu.edu.cn
Jianmin Li
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China Corresponding E-mail: jrcheng@staff.shu.edu.cn
Shundong Bu
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China Corresponding E-mail: jrcheng@staff.shu.edu.cn
Shengwen Yu
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China Corresponding E-mail: jrcheng@staff.shu.edu.cn
Dengren Jin
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China Corresponding E-mail: jrcheng@staff.shu.edu.cn
Jinrong Cheng
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, China Corresponding E-mail: jrcheng@staff.shu.edu.cn
Get access

Abstract

A facile hydrothermal route assisted by polyethylene glycol (PEG) 400 was utilized to synthesize single-phase Bi2Fe4O9 crystallites. X-ray diffraction results showed the products with PEG 400 of 30 g/L exhibited a preferred growth along the (001) plane. Transmission electron microscopy indicated that the morphology of the as-prepared Bi2Fe4O9 crystallites with PEG 400 were plake-like and rod-like. Strong absorption in visible-light region of the products was characterized by UV-vis diffuse reflectance spectrum (UV-DRS). The photocatalytic activity of Bi2Fe4O9 crystallites was evaluated on degradation of methyl orange (MO) under visible light irradiation. For 3 h irradiation, the degradation ratio was increased to 93% with the aid of a small amount of H2O2. The analysis of FT-IR spectra proved that the Bi2Fe4O9 catalysts were remained stable after the photocalytic reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dong, W. Y., Lee, C. W., Lu, X. C., Sun, Y. J., Hua, W. M., Zhuang, G. S., Zhang, S. C., Chen, J. M., Hou, H. Q. and Zhao, D. Y., Appl. Catal. B: Environ. 95, 197207 (2010).Google Scholar
[2] Choi, W. Y., Park, N. S., Wiesner, M. R. and Kim, J. O., Water Sci. Technol. 62, 963971 (2010).Google Scholar
[3] Wang, X. C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K. and Antonietti, M., Nat. Mater. 8, 7680 (2009).Google Scholar
[4] Kim, J., Lee, C. W. and Choi, W., Environ. Sci. T echnol. 44, 68496854 (2010).Google Scholar
[5] Tabata, M., Maeda, K., Higashi, M., Lu, D. L., Takata, T., Abe, R. and Domen, K., Langmuir 26, 91619165 (2010).Google Scholar
[6] Iliev, M. N., Litvinchuk, A. P., Hadjiev, V. G., Gospodinov, M. M., Skumryev, V. and Ressouche, E., Phys. Rev. B 81, 024302 (2010).Google Scholar
[7] Park, Y. A., Song, K. M., Lee, K. D., Won, C. J. and Hur, N., Appl. Phys. Lett. 96 (2010).Google Scholar
[8] Yang, Z., Huang, Y., Dong, B., Li, H. L. and Shi, S. Q., J. Solid State Chem. 179, 33243329 (2006).Google Scholar
[9] Poghossian, A. S., Abovian, H. V., Avakian, P. B., Mkrtchian, S. H., Haroutunian, V. M., Sens. Actuators B4, 545 (1991).Google Scholar
[10] Zakharchenko, N. I., Kinet. Catal. 43, 9598 (2002).Google Scholar
[11] Xiong, Y., Wu, M. Z., Peng, Z. M., Jiang, N. and Chen, Q. W., Chem. Lett. 33, 502503 (2004).Google Scholar
[12] Ruan, Q. J. and Zhang, W. D., J. Phys. Chem. C113, 41684173 (2009).Google Scholar
[13] Sun, S. M., Wang, W. Z., Zhang, L. and Shang, M., J. Phys. Chem. C113, 1282612831 (2009).Google Scholar
[14] Zhu, L. M., Yang, H., Jin, D. L. and Zhu, H. L., Inorg. Mater. 43, 13071312 (2007).Google Scholar
[15] Kavas, H., Baykal, A., Toprak, M. S., Koseoglu, Y., Sertkol, M. and Aktas, B., J. Alloys Compd. 479, 4955 (2009).Google Scholar
[16] Shang, M., Wang, W. Z., Zhou, L., Sun, S. M. and Yin, W. Z., J. Hazard. Mater. 172, 338344 (2009).Google Scholar
[17] Zhao, W., Ya, J., Xin, Y., Zhao, D. and Zhou, H. P., J. Am. Ceram. Soc. 92, 16071609 (2009).Google Scholar
[18] Li, Z. Q., Xiong, Y. J. and Xie, Y., Inorg. Chem. 42, 81058109 (2003).Google Scholar
[19] Luo, W., Zhu, L. H., Wang, N., Tang, H. Q., Cao, M. J. and She, Y. B., Environ. Sci. Technol. 44, 17861791 (2010).Google Scholar
[20] Si, R., Zhang, Y. W., You, L. P. and Yan, C. H., Angew. Chem. Int. Ed. 44, 32563260 (2005).Google Scholar