Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-17T11:23:33.377Z Has data issue: false hasContentIssue false

Peak Voltage Insensitivity to Quantum Well Width in Resonant Interband Tunneling Diodes

Published online by Cambridge University Press:  10 February 2011

H. Kitabayashi
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-01, Japan, hiroto@aecl.ntt.co.jp
T. Waho
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-01, Japan, hiroto@aecl.ntt.co.jp
Masafumi Yamamoto
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-01, Japan, hiroto@aecl.ntt.co.jp
Get access

Abstract

We have investigated the peak voltage (Vp) in InAs/A1Sb/GaSb/A1Sb/InAs double-barrier resonant interband tunneling (DBRIT) diodes with various GaSb well widths (Lw). After eliminating the voltage drop resulting from parasitic resistance included in the measured peak voltage (Vpm), we found that the intrinsic peak voltage (Vpint) was almost insensitive to Lw and had a small, and virtually constant value (∼ 60 mV) at Lw, ranging from 10 to 30 monolayers. This insensitivity contrasts with the peak voltage of the conventional resonant tunneling diodes with intraband tunneling, which is sensitive to changes in Lw. This insensitivity can be explained by the fact that Vpint in Sb-based BDRIT diodes is affected by the occupied states in the collector rather than by the resonance level itself in the interband tunneling process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Capasso, F., Sen, S., Beltram, F., and Cho, A.Y.: Physics of Quantum Electron Devices, ed. Capasso, F. (Springer-Verlag, Berlin, 1990) Vol.28, Chap. 7, p. 181.Google Scholar
2. Yokoyama, N., Muto, S., Ohnishi, H., Imamura, K., Mori, T., and Inata, T.: Physics of Quantum Electron Devices, ed. Capasso, F. (Springer-Verlag, Berlin, 1990) Vol.28, Chap. 8, p. 253.Google Scholar
3. Seabaugh, A. C., Taddiken, A. H., Beam, E. A. III, Randall, J. N., Kao, Y. C., and Newell, B., Tech. Dig. Int. Electron Device Meeting, IEDM-93, 419 (1993).Google Scholar
4. Maezawa, K., Akeyoshi, T., and Mizutani, T., IEEE Trans. Electron devices 41, 148 (1994).Google Scholar
5. Brown, E. R., Söderström, J. R., Parker, C. D., Mahoney, L. J., Molvar, K. M., and McGill, T. C., Appl. Phys. Lett. 58, 2291 (1991).Google Scholar
6. Özbay, E., Bloom, David M., Chow, D. H., and Schulman, J. N. IEEE Electron Device Lett. 14, 400 (1993).Google Scholar
7. Shimizu, N., Nagatsuma, T., Waho, T., Shinagawa, M., Yaita, M., and Yamamoto, M., Electron. Lett. 31, 1695 (1995).Google Scholar
8. Broekaert, Tom P. E. Bara, Berinder, Wagt, J. Paul A. an der Seabbaugh, Alan C., Morris, Frank J., Moise, Theodore S., Beam, A. III, and Frazier, Gray A., J. Solid-State Circuits 33, 1342 (1998).Google Scholar
9. Ito, T., Waho, T., Osaka, J., Yokoyama, H., and Yamamoto, M., IEEE MTT-S International Microwave Symposium Digest 1, 197 (1998).Google Scholar
10. J. R. Söderström, Chow, D. H., and McGill, T. C., Appl. Phys. Lett. 55, 1094 (1989).Google Scholar
11. Kitabayashi, H., Waho, T., and Yamamoto, M., J. Appl. Phys. 84, 1460 (1998).Google Scholar
12. Kitabayashi, H., Waho, T., and Yamamoto, M., Jpn. J. Appl. Phys. 36, 1807(1997).Google Scholar