Hostname: page-component-5db6c4db9b-s6gjx Total loading time: 0 Render date: 2023-03-26T04:25:24.917Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Pb Electrodeposition in the Presence of Chlorine Ions on Cu(100): An in Situ Optical Reflectivity Difference Study

Published online by Cambridge University Press:  15 February 2011

J. Gray
Affiliation:
Department of Physics, University of California, Davis, CA 95616, U.S.A.
W. Schwarzacher
Affiliation:
H.H. Wills Physics Laboratory, Tyndall Avenue Bristol BS8 1TL, U.K.
X.D. Zhu
Affiliation:
Department of Physics, University of California, Davis, CA 95616, U.S.A.
Get access

Abstract

We studied the initial stages of the electrodeposition of Pb in the presence of chlorine ions on Cu(100), using an oblique-incidence optical reflectivity difference (OIRD) technique. The OI-RD results reveal that immediately following the underpotential deposition (UPD) of the first Pb monolayer, two different types of bulk-phase films grow depending upon the magnitude of overpotential and cyclic voltammetry (CV) scan rate. At low overpotentials and/or slow scan rates, we propose that a bulk-phase Pb film grows on top of the UPD monolayer. At high overpotentials and/or fast scan rates, either a PbO, PbCl2, or a rough Pb bulk-phase layer grows on top of the UPD layer such that the reflectivity difference signal from such a film has an opposite sign.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Muller, R. H., and Farmer, J.C., Surface Science 135, 521 (1983).CrossRefGoogle Scholar
2. Morin, S., Lachenwitzer, A., Magnussen, O.M., and Behm, R.J., Phys. Rev. Lett. 83, 5066 (1999).CrossRefGoogle Scholar
3. Palomar-Pardave, M., Miranda-Hernandez, M., Gonzalez, I., Bitina, N., Surface Science 399, 80 (1998).CrossRefGoogle Scholar
4. Andrieu, S., d'Avitaya, F. F. Arnaud, and Pfister, J.C., Surface Science 238, 53 (1990).CrossRefGoogle Scholar
5. Voigtlander, B., Weber, T., Smilauer, P., and Wolf, D. E., Phys. Rev. Lett. 78, 2164 (1997).CrossRefGoogle Scholar
6. Brisard, G. M., Entissar, Z., Gasteiger, H.A., Markovic, N. M., Ross, P.N. Jr., langmuir 13, 2390 (1997).CrossRefGoogle Scholar
7. Moffat, T. P., J. Phys. Chem. B 102, 10020 (1998).CrossRefGoogle Scholar
8. Shima, M., Salamanca-Riba, L.G., McMichael, R.D., and Moffat, T.P., Journal of the Electrochemical Society 148, C518 (2001).CrossRefGoogle Scholar
9. Wong, A. and Zhu, X.D., Appl. Phys. A. 63, 1 (1996).CrossRefGoogle Scholar
10. Gray, J., Thomas, P., and Zhu, X.D., Review of Scientific Instruments 72, 3714 (2001).CrossRefGoogle Scholar
11. Stickney, J. L., Ehlers, C.B. and Gregory, B.W., langmuir 4, 1368 (1988).CrossRefGoogle Scholar
12. Kruger, J., Journal of the Electrochemical Society 108, 503 (1961).CrossRefGoogle Scholar