Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T18:45:38.123Z Has data issue: false hasContentIssue false

Passivation of Silicon Surfaces Using Atomic Layer Deposited Metal Oxides

Published online by Cambridge University Press:  31 January 2011

Jun Wang
Affiliation:
Jun.Wang@jacks.sdstate.edu, South Dakota State University, Electrical Engineering and Computer Science, Brookings, South Dakota, United States
Mahdi Farrokh Baroughi
Affiliation:
m.farrokhbaroughi@sdstate.edu, South Dakota State University, Electrical Engineering and Computer Science, Brookings, South Dakota, United States
Mariyappan Shanmugam
Affiliation:
Mariyappan.Shanmugam@sdstate.edu, South Dakota State University, Electrical Engineering and Computer Science, Brookings, South Dakota, United States
Roohollah Samadzadeh-Tarighat
Affiliation:
rsamadza@engmail.uwaterloo.ca, University of Waterloo, Waterloo, Canada
Siva Sivoththaman
Affiliation:
Sivoththaman@uwaterloo.ca, University of Waterloo, Waterloo, Canada
Sanjoy Paul
Affiliation:
Sanjoy.Paul@sdstate.edu, South Dakota State University, Electrical Engineering and Computer Science, Brookings, South Dakota, United States
Get access

Abstract

Surface passivation of silicon substrates using atomic layer deposited Al2O3 and HfO2 thin films are assessed. Al2O3 and HfO2 dielectric layers with various thicknesses were deposited on both sides of n-type (100) FZ-Si substrates (resistivity 4 – 6 Ω-cm) at 200°C by atomic layer deposition (ALD) system. The effective excess carrier lifetime of as-deposited oxide/Si/oxide structure was measured by microwave-photoconductivity-decay (MWPCD) measurement technique and it was observed that the thicker ALD dielectrics lead to higher effective excess carrier lifetime and better surface passivation. The measurements showed average excess carrier lifetime values of 302 μs and 347 μs for as-deposited Al2O3 and HfO2 passivated Si substrates with 150 ALD cycles, respectively. MWPCD and capacitance-voltage (C-V) measurements suggest that as-deposited ALD HfO2 layer leads to a better surface passivation compared to as-deposited ALD Al2O3 layer. Further, the results suggest that there exist fixed negative charges in the bulk of the ALD dielectrics and this contributes to the field effect passivation of the silicon surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Agostinelli, G. Delabie, A. Vitanoz, P. Alexieva, Z. Dekkers, H. F. W. Wolf, S. De, and Beaucarne, G. Sol. Energy. Mater. Sol. Cells 90, 3438(2006).Google Scholar
2 Hoex, B., Heil, S.B.S. Sanden, M. C. M. van de, and Kessels, W. M. M. Appl. Phys. Lett. 89, 042112(2006).Google Scholar
3 Hoex, B. Schmidt, J. Bock, R. Altermatt, P. P. Sanden, M. C. M. van de, and Kessels, W. M. M. Appl. Phys. Lett. 91, 112107(2007)Google Scholar
4 Hoex, B. Gielis, J. J. H. Sanden, M. C. M. van de, and Kesselsb, W. M. M. J. Appl. Phys. 104, 113703(2008).Google Scholar
5 Hoex, B. Schmidt, J., Pohl, P. Sanden, M.C.M. van de, and Kessels, W.M.M. J. Appl. Phys. 104, 044903(2008)Google Scholar
6 Schmidt, J. A.Merkle, Brendel, R. Hoex, B.. Sanden, M.C.M. van de, Kessels, W.M.M. Prog. Photovolt: Res. Appl. 2008; 16:461466.Google Scholar
7 Gielis, J. J. H. Hoex, B. Sanden, M. C. M. van de, and Kessels, W. M. M. Appl. Phys. Lett. 92, 253504(2008).Google Scholar
8 Gielis, J. J. H. Hoex, B. Sanden, M. C. M. van de, and Kessels, W. M. M. J. Appl. Phys. 104, 073701(2008)Google Scholar
9 Taguchi, M., Sakata, H., Yoshimine, Y. Maruyama, E., Terakawa, A., Tanaka, M., Kiyama, S., 31st IEEE Photovoltaic Specialists Conference, 2005. p.p. 866871.Google Scholar
10 Farrokh-Baroughi, M. and Sivoththaman, S. IEEE Trans. Electron Devices, Vol. 28, pp. 575577, 2007.Google Scholar
11 Londergan, A. Straten, O. Van der, Gendt, S. De, Elam, J. Bent, S. Kang, S., Atomic Layer Deposition 3, Proceedings: Atomic Layer Deposition Application Symposium (Washington, 2007).Google Scholar
12 Matsunaga, K. Tanaka, T. Yamamoto, T. and Ikuhara, Y. Phys. Rev. B 68, 085110(2003).Google Scholar
13 Zhu, W. J. Ma, T. P. Zafar, S. and Tamagawa, T. IEEE Trans. Electron Devices, vol. 23, pp.597599.Google Scholar
14 Aberle, A. G. Glunz, S. and Warta, W. J. Appl. Phys. 71 (9), May 1992.Google Scholar
15 Schroeder, Dieter K. Semiconductor Material and Device Characterization (Wiley, New York, 2006).Google Scholar
16 Nicollian, E. H. and Brews, J. R. MOS Physics and Technology (Wiley, New Jersey, 2003).Google Scholar