Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T00:45:15.806Z Has data issue: false hasContentIssue false

Parallel Tight-Binding Simulations of Nanophase Ceramics: Atomic and Electronic Transport at Grain Boundaries

Published online by Cambridge University Press:  21 March 2011

Kenji Tsuruta
Affiliation:
Department of Electrical and Electronic Engineering, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, JAPAN Email: tsuruta@elec.okayama-u.ac.jp, URL: http://www.mat.elec.okayama-u.ac.jp
Hiroo Totsuji
Affiliation:
Department of Electrical and Electronic Engineering, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, JAPANURL: http://www.mat.elec.okayama-u.ac.jp
Chieko Totsuji
Affiliation:
Department of Electrical and Electronic Engineering, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, JAPANURL: http://www.mat.elec.okayama-u.ac.jp
Get access

Abstract

We report on tight-binding molecular dynamics (TBMD) of neck formation processes and atomistic and electronic diffusivity at grain boundaries of nanocrystalline silicon carbide. The TBMD simulations are based on an O(N) algorithm (the Fermi-operator expansion method) for calculating electronic contributions to energy and forces. The code has been fully parallelized on our PC-based parallel machines. The TBMD simulations of collision of SiC nanospheres show that the processes of neck formation depend strongly on contact angles between the two grains. Atomic diffusions are quite different in the necks formed with different angles. Also, the electronic transport property at grain boundary is investigated via a TB representation of an electronic diffusivity. A preliminary result on the diffusivity at a Σ=9 grain boundary of SiC indicates significant enhancement of electron mobility along the grain boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nanophase and Nanocomposite Materials III, edited by Komarneni, S., Paker, J. C., and Hahn, H., Mater. Res. Soc. Symp. Proc. vol. 581 (MRS, Warrendale, PA, 2000).Google Scholar
2. Superplasticity: Current and Future Potential, edited by Berbon, P. B. et al. ., Mater. Res. Soc. Symp. Proc. vol. 601 (MRS, Warrendale, PA, 2000).Google Scholar
3. E.g., IEEE Trans. Electron Devices (Special Issue) Vol. 46 (1999); Silicon Carbide Ceramics - 1: Fundamental and Solid Reaction, edited by S. Somiya and Y. Inomata (Elsevier Applied Science, London and New York, 1991).Google Scholar
4. Tight-Binding Approach to Computational Materials Science, edited by Turchi, P., Gonis, A., Colombo, L., Mater. Res. Soc. Symp. Proc. vol. 491 (MRS, Warrendale, PA, 1998).Google Scholar
5. Goedecker, S. and Colombo, L., Phys. Rev. Lett. 73, 122 (1994).Google Scholar
6. Kohyama, M., Kose, S., Kinoshita, M., and Yamamoto, R., J. Phys. Condens. Matter 2, 7791 (1990); ibid. 2, 7809 (1990); J. Robertoson, Phil. Mag. B 66, 615 (1992); D. Sanchez-Portal, E. Artacho, J. M. Soler, Solid State Comm. 95, 685 (1995)Google Scholar
7. Mercer, J. L., Phys. Rev. B 54, 4650 (1996).Google Scholar
8. Tsuruta, K., Totsuji, H., Totsuji, C., Phil. Mag. Lett. (to be published).Google Scholar
9. Bowler, D. R., Aoki, M., Goringe, C. M., Horsfield, A. P., Pettifor, D. G., Modelling Simul. Mater. Sci. Eng. 5, 199 (1997).Google Scholar
10. Shimojo, F., Campbell, T. J., Kalia, R. K., Nakano, A., Vashishta, P., Ogata, S., and Tsuruta, K., Future Generation Computer Systems 17, 279 (2000).Google Scholar
11. Martyna, G. J., Tuckerman, M. E., Tobias, D. J., and Klein, M. L., Mol. Phys. 87, 1117 (1996).Google Scholar
12. Kohyama, M. and Tanaka, K., Mater. Sci. Forum Vols. 294–296, 231 (1999).Google Scholar
13. Chatterjee, A., Kalia, R. K., Nakano, A., Omeltchenko, A., Tsuruta, K., Vashishta, P., Loong, C.-K, Winterer, M., and Klein, S., Appl. Phys. Lett. 77, 1132 (2000).Google Scholar
14. Roche, S. and Mayou, D., Phys. Rev. Lett. 79, 2518 (1997).Google Scholar