Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-9th95 Total loading time: 0.299 Render date: 2022-12-06T19:04:05.825Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Overview of Chemical Modeling of Nuclear Waste Glass Dissolution

Published online by Cambridge University Press:  28 February 2011

William L. Bourcier*
Affiliation:
Lawrence Livermore National Laboratory, L-2199, Livermore, CA 94550
Get access

Abstract

Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alteration layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer.

Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doremus, R. H., J. Non-cryst. Solids. 19, 137 (1975).CrossRefGoogle Scholar
2. Doremus, R. H., J. Non-cryst. Solids. 55, 143 (1983).CrossRefGoogle Scholar
3. Wallace, Richard M. and Wicks, George G., Mat. Res. Soc. Symp. Proc. 15 23 (1983).CrossRefGoogle Scholar
4. Harvey, K. B., Litke, C. D., and Boase, C. A., Physics and Chem. of Glasses. 27, 15 (1986).Google Scholar
5. Banba, T., Murakami, T., and Kimura, H., Mat. Res. Soc. Symp. Proc. 44, 113 (1985).CrossRefGoogle Scholar
6. Chambre, P. L., Kang, C. H., Lee, W. W.-L., and Pigford, T. H., Mat. Res. Soc. Symp. Proc. 112, 85 (1988).Google Scholar
7. Abrajano, T. A., Bates, J. K., Woodland, A. B., Bradley, J. P., and Bourcier, W. L., Clays and Clay Minerals, in press, (1991).Google Scholar
8. Smets, B. M. J., and Lommen, T. P. A., Physics and Chem. of Glasses. 23, 83 (1982).Google Scholar
9. Bunker, B. C., Tallant, D. R., Kirkpatrick, R. J., and Turner, G. L., Physics and Chem. of Glasses. 31, (1990).Google Scholar
10. Greaves, G. N., J. Noncryst. Solids. 120, 108 (1990).CrossRefGoogle Scholar
11. Bunker, B. C., Tallant, D. R., Headley, T. J., Turner, G. L., and Kirkpatrick, R. J., Physics and Chem. of Glasses. 29, 106 (1988).Google Scholar
12. Petit, J.-C., Delia Mea, G., Dran, J.-C., Magonthier, M.-C., Mando, P. A., and Paccagnella, A., Geochim. et Cosmochim. Acta. 54, 1941 (1990).CrossRefGoogle Scholar
13. Lutze, W., in Radioactive Waste Forms For the Future, edited by Lutze, W. and Ewing, R. C. (North Holland, New York, 1988), p. 1.Google Scholar
14. Murakami, T., Ewing, R. C., and Bunker, B. C., Mat. Res. Soc. Symp. Proc. 112, 737 (1988).CrossRefGoogle Scholar
15. Pederson, L. R., Buckwalter, C. Q., McVay, G. L., and Riddle, B. L., Mat. Res. Soc. Symp. Proc. 15, 4 (1983).Google Scholar
16. Chick, L. A., and Pederson, L. R., Mat. Res. Soc. Symp. Proc. 26, 635 (1984).CrossRefGoogle Scholar
17. Grambow, B., Glastechn. Ber. 56K, Bd. 1, p. 566, (1983).Google Scholar
18. Grambow, B., Nuclear Waste Glass Dissolution: Mechanism. Model, and Application. JSS Project Report 8702, 102 p. (1987).Google Scholar
19. Crovisier, J. L., Honnorez, J., and Eberhart, J. P., Geochim. et Cosmochim. Acta. 51. 2977 (1987).CrossRefGoogle Scholar
20. Bourcier, W. L., Peiffer, D. W., Knauss, K. G., McKeegan, K. D. and Smith, D. K., Mat. Res. Soc. Symp. Proc. 176, 209 (1990).CrossRefGoogle Scholar
21. Advocat, T., Crovisier, J. L., Fritz, B., and Vernaz, E., Mat. Res. Soc. Symp. Proc. 176. 241 (1990).CrossRefGoogle Scholar
22. Mouche, E., and Vernaz, E.. Mat. Res. Soc. Symp. Proc. 112, 703 (1988).CrossRefGoogle Scholar
23. Knauss, K., Bourcier, W. L., McKeegan, K. D., Merzbacher, C. I., Nguyen, S. N., Ryerson, F. J., Smith, D. K., Weed, H. C., and Newton, L., Mat. Res. Soc. Symp. Proc. 176, 371 (1990).Google Scholar
24. Pederson, L. R., Physics and Chem. of Glasses. 28, 17 (1987).Google Scholar
25. Isard, J. O. and Muller, W., Physics and Chem. of Glasses. 27, 55 (1986).Google Scholar
26. Feng, X., Pegg, I. L., Barkatt, A., Macedo, P. B., Cucinell, S. J. and Lai, S., Nuclear Technology. 72, 239 (1990).Google Scholar
27. Lanford, W. A., Davis, K., Lamarche, P., Laursen, T., and Groleau, R., J. Noncryst. Solids. 33, 249 (1979).CrossRefGoogle Scholar
28. Abrajano, T. A., and Bates, J. K., Mat. Res. Soc. Symp. Proc. 84, 533 (1987).Google Scholar
29. Petit, J.-C., Dran, J.-C., Paccagnella, A., and Della Mea, G., Earth and Planetary Science Letters. 93, 292 (1989).CrossRefGoogle Scholar
30. Knauss, K. G. and Wolery, T. J., Geochim. et Cosmochim. Acta. 50, 2481 (1986).CrossRefGoogle Scholar
31. Smets, B. M. J., Tholen, M. G. W., and Lommen, T. P. A., J. Noncryst. Solids. 65, 319 (1984).CrossRefGoogle Scholar
32. Wood, B. J., and Walther, J. V., Science. 222, 413 (1983).CrossRefGoogle Scholar
33. Murphy, W. M., and Helgeson, H. C., Am. J. Science. 289. 17 (1989).CrossRefGoogle Scholar
34. Garofalini, S. H., J. Noncryst. Solids. 120, 1 (1990).CrossRefGoogle Scholar
35. Dran, J.-C., Langevin, Y., Doorhyee, E., and Petit, J.-C., Mat. Res. Soc. Symp. Proc. 84, 559 (1987).Google Scholar
36. Lee, Cheng-Tsui, Ph.D. thesis, University of Florida, 1986.Google Scholar
37. Casey, W. H., and Bunker, B., Leaching of mineral and glass surfaces during dissolution, in Mineral-Water Interface Geochemistry, edited by Hochella, M and White, A. (Mineralogical Society of America, 1990) pp. 397424.CrossRefGoogle Scholar
38. Buckwalter, C. Q., and Pederson, L. R., J. Am. Cer. Soc. 65, 431 (1982).CrossRefGoogle Scholar
39. Velbel, M. A., Influence of surface area, surface characteristics, and solution composition on feldspar weathering rates, in Amer. Chem. Soc. Sympo. 323. p 615. (1986).Google Scholar
40. Ewing, R. C., Mat. Res. Soc. Symp. Proc. 84, 703 (1987).Google Scholar
41. Grambow, B., and Strachan, D. M., A comparison of the performance of nuclear waste glasses by modeling. Pacific Northwest Laboratories Report PNL-6698. 59 p. (1988).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Overview of Chemical Modeling of Nuclear Waste Glass Dissolution
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Overview of Chemical Modeling of Nuclear Waste Glass Dissolution
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Overview of Chemical Modeling of Nuclear Waste Glass Dissolution
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *