Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.15 Render date: 2021-07-31T08:56:08.455Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Orientation of Organic Semiconductor Films on Photoreactive Polyimide Films and its Influence on Field-Effect Transistor Characteristics

Published online by Cambridge University Press:  01 February 2011

Yuichiro Uchida
Affiliation:
Department of Applied Physics, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
Kuniharu Takizawa
Affiliation:
Department of Applied Physics, Seikei University, Musashino-shi, Tokyo 180-8633, Japan
Get access

Abstract

In this study, we have investigated the effect of surface treatment on the orientation and mobility of pentacene by using a photoreactive polyimide film to modify the gate-insulator surfaces of organic field effect transistors (OFETs). Surface modification includes a photoreactive polyimide film, presenting a passivated interface on which the semiconductor can grow. This polyimide film can control of the orientation of semiconductor by using linearly polarized deep UV (LPDUV) irradiation. Fabricated OFETs include stacked structures of Ta2O5 as the gate insulators and the photoreactive polyimide. Most of the characteristic parameters of the OFETs, such as carrier mobility and on/off current ration, have been improved by using the photo-alignment treatment achieved with LPDUV irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Knipp, D., Street, R. A., Vlkel, A., and Ho, J., J. Appl. Phys., 93, 347 (2003).CrossRefGoogle Scholar
2 Lin, Y. Y., Gundlach, D. J., Nelson, S. F., and Jackson, T. N., IEEE Electron Device Lett., 18, 606 (1997).CrossRefGoogle Scholar
3 Klauk, H., Halik, M., Zshieschang, U., Schmid, G., Radlik, W., and Weber, W., J. Appl. Phys., 92, 5259 (2002).CrossRefGoogle Scholar
4 Salleo, A., Chabinyc, M. L., Yang, M. S., and Street, R. A., Appl. Phys. Lett., 81, 4383 (2002).CrossRefGoogle Scholar
5 Kelley, T. W., Muyres, D. V., Baude, P. F., Smith, T. P., and Jones, T. D. in Organic and Polymeric Materials and Devices, edited by Blom, P.W.M., Greenham, N.C., Dimitrakopoulos, C.D., Frisbie, C.D., (Mate. Res. Soc. Symp. Proc. 771, San Francisco, CA, 2003) pp. 169179.Google Scholar
6 Endo, H., Miyama, Y., Nihira, T., Fukuro, H., Akiyama, E., and Nagase, Y., J. Photopolym. Sci. Technol., 13, 277 (2000).CrossRefGoogle Scholar
7 Hirosawa, I., Jpn. J. Appl. Phys., 35, 5873 (1996).CrossRefGoogle Scholar
8 Iino, Y., Inoue, Y., Fujisaki, Y., Fujikake, H., Sato, H., Kawakita, M., Tokito, S., and Kikuchi, H., Jpn. J. Appl. Phys., 42, 299 (2003).CrossRefGoogle Scholar
9 Fujisaki, Y., Inoue, Y., Kurita, T., Tokito, S., Fujikake, H., and Kikuchi, H., Jpn. J. Appl. Phys., 43, 372 (2004).CrossRefGoogle Scholar
10 Dimitrakopulos, C. D., Brown, A. R., and Pomp, A., J. Appl. Phys., 80, 2501 (1996).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Orientation of Organic Semiconductor Films on Photoreactive Polyimide Films and its Influence on Field-Effect Transistor Characteristics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Orientation of Organic Semiconductor Films on Photoreactive Polyimide Films and its Influence on Field-Effect Transistor Characteristics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Orientation of Organic Semiconductor Films on Photoreactive Polyimide Films and its Influence on Field-Effect Transistor Characteristics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *