Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-5dv6l Total loading time: 0.4 Render date: 2021-06-13T15:47:38.513Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Optical Properties and van der Waals-London Dispersion Interactions in Inorganic and Biomolecular Assemblies

Published online by Cambridge University Press:  13 March 2014

Daniel M. Dryden
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Yingfang Ma
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Jacob Schimelman
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Diana Acosta
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Lijia Liu
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Ozan Akkus
Affiliation:
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Mousa Younesi
Affiliation:
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Islam Anowarul
Affiliation:
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Linda K. Denoyer
Affiliation:
Spectrum Square Associates Inc, Ithaca, NY 14850, U.S.A.
Wai-Yim Ching
Affiliation:
Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, U.S.A.
Rudolf Podgornik
Affiliation:
Department of Physics, University of Massachusetts, Amherst, MA 01003, U.S.A.
V. Adrian Parsegian
Affiliation:
Department of Physics, University of Massachusetts, Amherst, MA 01003, U.S.A.
Nicole F. Steinmetz
Affiliation:
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Roger H. French
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Corresponding
E-mail address:
Get access

Abstract

The optical properties and electronic structure of AlPO4, SiO2, Type I collagen, and DNA were examined to gain insight into the van der Waals-London dispersion behavior of these materials. Interband optical properties of AlPO4 and SiO2 were derived from vacuum ultraviolet spectroscopy and spectroscopic ellipsometry, and showed a strong dependence on the crystals’ constituent tetrahedral units, with strong implications for the role of phosphate groups in biological materials. The UV-Vis decadic molar absorption of four DNA oligonucleotides was measured, and showed a strong dependence on composition and stacking sequence. A film of Type I collagen was studied using spectroscopic ellipsometry, and showed a characteristic shoulder in the fundamental absorption edge at 6.05 eV. Ab initio calculations based on density functional theory corroborated the experimental results and provided further insights into the electronic structures, interband transitions and vdW-Ld interaction potentials for these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Hemminger, J., From Quanta to the Continuum: Opportunities for Mesoscale Science, (U.S. Department of Energy, BESAC Subcommittee on Mesoscale Science, Washington, D.C., 2012)Google Scholar
French, R., Parsegian, V., Podgornik, R., Rajter, R., Jagota, A., Luo, J., Asthagiri, D., Chaudhury, M., et al. ., Rev. Mod. Phys. 82(2), 18871944 (2010).CrossRef
Hamaker, H.C., Physica, 4(10), 10581072 (1937).CrossRef
Lifshitz, E. M., J. Exp. Theor. Phys. USSR 29, 94110 (1956).
Parsegian, V.A., Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists, (Cambridge University Press, Cambridge, United Kingdom, 2006).Google Scholar
Hopkins, J.C., Dryden, D.M., Ching, W.-Y., French, R.H., Parsegian, V.A., Podgornik, R., J. Colloid Interface Sci., In Press
French, R.H., J. Am. Ceram. Soc. 83(9), 2117–46 (2000)CrossRef
Jones, D. J., French, R. H., Mullejans, H., Loughin, S., Dorneich, A. D., and Carcia, P. F., J. Mater. Res. 14(11), 43374344 (1999)CrossRef
French, R.H., J. Am. Ceram. Soc. 73(3) 477489 (1990).CrossRef
Tan, G. L., Lemon, M. F., Jones, D. J., and French, R. H., Phys. Rev. B 72 (20) 205117 (2005).CrossRef
Tan, G. L., Lemon, M. F., and French, R. H., J. Am. Ceram. Soc. 86(11), 18851892 (2003)CrossRef
Dryden, D.M., Tan, G.L., and French, R.H., J. Am. Ceram. Soc., In Press
French, R.H., Phys. Scripta 41(4), 404408 (1990)CrossRef
Kühn, K., “The Classical Collagens: Types I, II, and III”; pp. 142 in Structure and Function of Collagen Types, (Academic Press, Waltham, MA, 1987).Google Scholar
Ramshaw, J.A., Shah, N.K., and Brodsky, B., J. Struct. Biol. 122 (1-2), 8691 (1998).CrossRef
Rajter, R., French, R.H., Ching, W.-Y., Podgornik, R., and Parsegian, V.A., RSC Adv., 3 823842 (2012).CrossRef
French, R.H., Mullejans, H., and Jones, D., J. Am. Ceram. Soc. 81(10), 25492557 (1998).CrossRef
Gecko Hamaker Software Suite, v. 2.0, <http://sourceforge.net/projects/geckoproj>.
Vesentini, S., Fitié, C.F.C., Montevecchi, F.M., and Redaelli, A., Biomech. Model. Mechanobiol. 3(4), 224234 (2005).CrossRef
Ching, W.-Y. and Rulis, P., Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals (Oxford University Press, Oxford, United Kingdom, 2012).CrossRefGoogle Scholar
Uquillas, J.A. and Akkus, O., Ann. Biomed. Eng. 40(8), 16411653 (2012).CrossRef
Cheng, X. et al. . Biomaterials 29(22), 32783288 (2008).CrossRef
Gervasio, F., Carloni, P., and Parrinello, M., Phys. Rev. Lett.., 89(120), 10802 (2002).CrossRef
Rulis, P., Ouyang, L., and Ching, W., Phys. Rev. B 70 (15) 155104 (2004).CrossRef
Bloomfield, V., Crothers, D. and Tinoco, I., Nucleic Acids: Structures, Properties, and Functions, 1 st ed. (University Science Books, Sausalito, CA, 2000).Google Scholar
Yang, M.K., French, R.H., Tokarsky, E.W., J. Micro/Nanolith. MEMS MOEMS 7 (3) 033010 (2008).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optical Properties and van der Waals-London Dispersion Interactions in Inorganic and Biomolecular Assemblies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optical Properties and van der Waals-London Dispersion Interactions in Inorganic and Biomolecular Assemblies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optical Properties and van der Waals-London Dispersion Interactions in Inorganic and Biomolecular Assemblies
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *