Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-zmlw7 Total loading time: 0.248 Render date: 2021-06-18T09:15:43.368Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

On the Unzipping Mechanisms of Carbon Nanotubes: Insights from Reactive Molecular Dynamics Simulations

Published online by Cambridge University Press:  30 July 2012

Ricardo P. dos Santos
Affiliation:
Physics Department, IGCE, Universidade Estadual Paulista, UNESP, 13506-900, Rio Claro, SP, Brazil.
Pedro A. Autreto
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Eric Perim
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Gustavo Brunetto
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Douglas S. Galvao
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Get access

Abstract

Unzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).CrossRef
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRef
Withers, F., Bointon, T. H., Dubois, M., Russo, S., and Craciun, M. F., Nano Lett. 11, 3912 (2011).CrossRef
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B., and Galvao, D. S., Nanotechnology 20, 465704 (2009).CrossRef
Cheng, S. H., Zou, K., Okino, F., Gutierrez, H. R., Gupta, A., Shen, N., Eklund, P. C., Sofo, J. O., and Zhu, J., Phys. Rev. B 81, 205435 (2010).CrossRef
Sofo, J., Chaudhari, A. and Barber, G., Phys. Rev. B, 75, 153401 (2007).CrossRef
Nair, R. R., Ren, W., Jalil, R., Riaz, I., Kravets, V. G., Britnell, L., Blake, P., Schedin, F., Mayorov, A. S., Yuan, S., Katsnelson, M. I., Cheng, H.-M., Strupinski, W., Bulusheva, L. G., Okotrub, A. V., Grigorieva, I. V., Grigorenko, A. N., Novoselov, K. S., and Geim, A. K., Small 6, 2877 (2010).CrossRef
Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M., Phys. Rev. B 54, 17954 (1996).CrossRef
Jiao, L., Zhang, L., Wang, X., Diankov, G., and Dai, H., Nature 458, 877 (2009).CrossRef
Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., and Tour, J. M., Nature 458, 872 (2009).CrossRef
Kim, K., Artyukhov, V. I., Regan, W., Liu, Y., Crommie, M. F., Yakobson, B. I., and Zettl, A., Nano Lett. 12, 293 (2012).CrossRef
Tang, C., Guo, W., and Chen, C., Phys. Rev. B 83, (2011).
van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A., J. Phys. Chem. A 105, 9396 (2001).CrossRef
Plimpton, S., J. Comp. Phys. 117, 1 (1995).CrossRef
Zang, A., Stephansson, O., Zang, A., and Stephansson, O., Stress Field of the Earth’S Crust (Springer Netherlands, Dordrecht, 2010).CrossRefGoogle Scholar
Jin, C., Lan, H., Peng, L., Suenaga, K., and Iijima, S., Phys. Rev. Lett. 102, 205501 (2009).CrossRef
Fogden, S., Howard, C. A., Heenan, R. K., Skipper, N. T., and Shaffer, M. S. P., ACS Nano 6, 54 (2012).CrossRef
Zhang, H., Zhao, M., He, T., Zhang, X., Wang, Z., Xi, Z., Yan, S., Liu, X., Xia, Y., and Mei, L., Phys Chem Chem Phys 12, 13674 (2010).CrossRef
Rangel, N. L., Sotelo, J. C., and Seminario, J. M., J Chem Phys 131, 031105 (2009).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the Unzipping Mechanisms of Carbon Nanotubes: Insights from Reactive Molecular Dynamics Simulations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the Unzipping Mechanisms of Carbon Nanotubes: Insights from Reactive Molecular Dynamics Simulations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the Unzipping Mechanisms of Carbon Nanotubes: Insights from Reactive Molecular Dynamics Simulations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *