Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-5qtdt Total loading time: 0.258 Render date: 2022-01-24T07:12:53.004Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On the Thermoelectric Potential of Inverse Clathrates

Published online by Cambridge University Press:  31 January 2011

Matthias Falmbigl
Affiliation:
matthias.falmbigl@univie.ac.at, University of Vienna, Institute of Physical Chemistry, Vienna, Austria
Peter F Rogl
Affiliation:
peter.franz.rogl@univie.ac.at, University Vienna, Physikalische Chemie, Waehringerstrasse 42, Vienna, A-1090, Austria
Ernst Bauer
Affiliation:
Ernst.bauer@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Martin Kriegisch
Affiliation:
martin.kriegisch@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Herbert Müeller
Affiliation:
Herbert.Mueller@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Silke Paschen
Affiliation:
paschen@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Get access

Abstract

In the context of a general survey on the thermoelectric potential of cationic clathrates, formation, crystal chemistry and physical properties were investigated for novel inverse clathrates deriving from Sn19.3Cu4.7P22I8. Substitution of Cu by Zn and Sn by Ni was attempted to bring down electrical resistivity and lower thermal conductivity. Materials were synthesized by mechanical alloying using a ball mill and hot pressing. Structural investigations for all specimens confirm isotypism with the cubic primitive clathrate type I structure (lattice parameters a = ˜1.1 nm and space group type Pm-3n). Studies of transport properties evidence holes as the majority charge carriers. Thermal expansion data, measured in a capacitance dilatometer from 4 to 300 K on Sn19.3Cu1.7Zn3P19.92.1I8, compare well with literature data available for Sn24P19.62.4Br8 and for an anionic type I clathrate Ba8Zn8Ge38. From the rather complex crystal structure including split atom sites and lattice defects thermal conductivity in inverse clathrates is generally low. Following Zintl rules rather closely inverse clathrates tend to be semiconductors with attractive Seebeck coefficients. Thus for thermoelectric applications the main activity will have to focus on achieving low electrical resistivity in a compromise with still sufficiently high Seebeck coefficients.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rowe, D. M., Ed., CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 2006).Google Scholar
2 Venkatasubramanian, R., Siivola, E., O'Quinn, B., “Superlattice Thin-Film Thermoelectric Material and Device Technologies”, CRC Handbook of Thermoelectrics, ed Rowe, D.M. (CRC Press, Boca Raton, FL, 2006) pp. 49.149.15.Google Scholar
3 Gelbstein, Y., Dashevsky, Z., Dariel, M.P., Phys. Stat. Sol. (RRL) 1(6), 232–234 (2007).Google Scholar
4 Prenninger, P., Grytsiv, A., Rogl, P., Bauer, E., “TE-Materials with Better Efficiencies and Lower Costs - a Contradiction?, paper presented at the 1st Conference: Thermoelectrics -A Chance for the Automotive Industry?, Berlin, 23 – 24 October 2008.Google Scholar
5 Nolas, G.S., Cohn, J.L., Slack, G.A., Schujman, S.B., Appl. Phys. Lett. 73, 178 (1998)10.1063/1.121747CrossRefGoogle Scholar
6 Rogl, P., “Formation and Crystal Chemistry of Clathrates”, CRC Handbook of Thermoelectrics, ed Rowe, D.M. (CRC Press, Boca Raton, FL, 2006) pp. 32–1–32.Google Scholar
7 Shevelkov, A.V., Russian Chemical Reviews 77(1), 119 (2008).10.1070/RC2008v077n01ABEH003746CrossRefGoogle Scholar
8 Menke, H., Schnering, H.G. von, Zeitschrift fuer Anorganische und Allgemeine Chemie 395(2-3), 223–38 (1973).CrossRefGoogle Scholar
9 Kovnir, K.A., Shevelkov, A.V., Russian Chemical Reviews 73(9), 923938 (2004).CrossRefGoogle Scholar
10 Shatruk, M.M., Kovnir, K.A., Lindsjoe, M., Presniakov, I.A., Kloo, L.A., Shevelkov, A.V., J. Solid State Chem. 161, 233242 (2001).CrossRefGoogle Scholar
11 Zaikina, J.V., Schnelle, W., Kovnir, K.A., Olenev, A.V., Grin, Y., Shevelkov, A.V., Solid State Sciences 9(8), 664671 (2007).CrossRefGoogle Scholar
12 Zaikina, J.V., Kovnir, K.A, Sobolev, A.V., Presniakov, I.A., Prots, Y., Baitinger, M., Schnelle, W., Olenev, A.V., Lebedev, O.I., Tendeloo, G. Van, Grin, Y., Shevelkov, A.V., Chemistry-A European Journal 13(18), 5090–9 (2007).10.1002/chem.200601772CrossRefGoogle Scholar
13 Mudryk, Ya., Rogl, P., Paul, C., Berger, S., Bauer, E., Hilscher, G., Godart, C., Noel, H., J. Phys. Condens. Matter 14, 79918004 (2002).CrossRefGoogle Scholar
14 Kovnir, K.A., Abramchuk, N.S., Zaikina, J.V., Baitinger, M., Burkhardt, U., Schnelle, W., Olenev, A.V., Lebedev, O.I., Tendeloo, G. Van, Dikarev, E.V., Shevelkov, A.V., Z. Kristallographie 221, 527532 (2006).Google Scholar
15 Zaikina, J.V., Kovnir, K.A., Schwarz, U., Borrmann, H., Shevelkov, A.V., Z. Kristallographie - New Crystal Structures 222(3), 177179 (2007).Google Scholar
16 Duenner, J., Mewis, A., Z. Anorg. Allg. Chemie 621, 191 (1995).Google Scholar
17 Carrillo-Cabrera, W., Budnyk, S., Prots, Y., Grin, Y., Z. Anorg. Allg. Chem. 630, 7226 (2004).Google Scholar
18 Kauzlarich, S.M., Ed. “Chemistry, Structure and Bonding of Zintl Phases and Ions”, Wiley-VCH, N.Y. (1996).Google Scholar
19 Kovnir, K.A., Sobolev, A.V., Presniakov, I.A., Lebedev, O.I., Tendeloo, G. Van, Schnelle, W., Grin, Y., Shevelkov, A.V., Inorganic Chemistry 44(24), 87868793 (2005).10.1021/ic051160kCrossRefGoogle Scholar
20 Shatruk, M.M., Kovnir, K.A., Shevelkov, A.V., Popovkin, B.A., Zhurnal Neorganicheskoi Khimii 45(2), 203209 (2000).Google Scholar
21 Melnychenko-Koblyuk, N., Grytsiv, A., Berger, St., Kaldarar, H., Michor, H., Röhrbacher, F., Royanian, E., Bauer, E., Rogl, P., Schmid, H., Giester, G., J. Phys. Cond. Mat. 19, 046203-26, (2007).Google Scholar
22 Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R., TYPIX standardized data and crystal chemical characterization of inorganic structure types (Berlin: Springer) (1994).CrossRefGoogle Scholar
23 Kovnir, K.A., Shatruk, M.M., Reshetova, L.N., Presniakov, I.A., Dikarev, E.V., Baitinger, M., Haarmann, F., Schnelle, W., Baenitz, M., Grin, Y., Shevelkov, A.V., Solid State Sciences 7(8), 957968 (2005).CrossRefGoogle Scholar
24 Mott, N.F., Phil Mag. B19, 835 (1984); The Physics of Hydrogenated Amorphous Silicon Vol. II. ed. by J. D. Joannopoulos and G. Luckowsky, Topics in Applied Physics, 56(Springer, Berlin Heidelberg 1984), p. 169.Google Scholar
25 Melnychenko-Koblyuk, N., Grytsiv, A., Fornasari, L., Kaldarar, H., Michor, H., Röhrbacher, F., Koza, M., Royanian, E., Bauer, E., Rogl, P., Rotter, M., Schmid, H., Marabelli, F., Devishvili, A., Doerr, M., Giester, G., J. Phys. Cond. Mat. 19, 216223 1–26 (2007).Google Scholar
26 Callaway, J., Baeyer, H. C. von, Phys. Rev. 120, 1149 (1960).CrossRefGoogle Scholar
27 Cahill, D., Pohl, R., Solid State Commun. 70, 927 (1989).CrossRefGoogle Scholar
28 Snyder, G.J., Toberer, E.S., Nature Materials 7, 105114 (2008).CrossRefGoogle Scholar
29 Rotter, M., Müller, H., Gratz, E., Doerr, M., Loewenhaupt, M., Rev. Sci. Instruments 69(7), 2742–45 (1998).CrossRefGoogle Scholar
30 Kovnir, K.A., Zaikina, J.V., Reshetova, L.N., Olenev, A.V., Dikarev, E.V., Shevelkov, A.V., Inorganic Chemistry 43(10), 32303236 (2004).CrossRefGoogle Scholar
31 Mukherjee, G.D., Bansal, C., Chatterjee, A., Phys. Rev. Lett. 76(11), 18761879 (1996).CrossRefGoogle Scholar
32 Reny, E., Yamanaka, S., Cros, Ch., Pouchard, M., AIP Conference Proceedings 590 (Nanonetwork Materials), 499502 (2001).CrossRefGoogle Scholar
33 Kishimoto, K., Koyanagi, T., Akai, K., Matsuura, M., Japanese Journal of Applied Physics Part 2: Letters & Express Letters 46(29-32), L746–L748 (2007).CrossRefGoogle Scholar
34 Kishimoto, K., Akai, K., Muraoka, N., Koyanagi, T., Matsuura, M., Applied Physics Letters 89(17), 172106/1–172106/3 (2006).CrossRefGoogle Scholar
35 Chu, T.L., Chu, S.S., Ray, R.L., Journal of Applied Physics 53(10), 7102–3 (1982).CrossRefGoogle Scholar
36 Kishimoto, K., Arimura, S., Koyanagi, T., Applied Physics Letters 88(22), 222115/1–222115/3 (2006).10.1063/1.2209207CrossRefGoogle Scholar
37 Jin, Z., Tang, Z., Litvinchuk, A., Guloy, A.M., Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, (2008).Google Scholar
38 Menke, H., Schnering, H.G. von, Zeitschrift Anorg. Allg. Chemie 424, 108 (1976).Google Scholar
39 Nesper, R., Curda, J., Schnering, H.G. von, Angew. Chemie 25, 369 (1986).CrossRefGoogle Scholar
40 Shatruk, M.M., Kovnir, K.A., Shevelkov, A.V., Presniakov, I.A., Popovkin, B.A., Inorganic Chemistry 38(15), 34553457 (1999).CrossRefGoogle Scholar
41 Deng, S., Tang, X., Li, P., Zhang, Q., Journal of Applied Physics 103, 073503 (2008).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the Thermoelectric Potential of Inverse Clathrates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the Thermoelectric Potential of Inverse Clathrates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the Thermoelectric Potential of Inverse Clathrates
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *