Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-ns2hh Total loading time: 0.279 Render date: 2022-10-05T00:39:35.076Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

On The Influence of Nb on the Transition Temperatures of Titanium Aluminides

Published online by Cambridge University Press:  26 February 2011

Harald F. Chladil
Affiliation:
harald.chladil@unileoben.ac.at, Montanuniversity Leoben, Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, Leoben, 8700, Austria, +43 3842 402 4204, +43 3842 402 4202
Helmut Clemens
Affiliation:
helmut.clemens@unileoben.ac.at, Montanuniversity Leoben, Department of Physical Metallurgy and Materials Testing, Leoben, 8700, Austria
Masao Takeyama
Affiliation:
takeyama@mtl.titech.ac.jp, Tokyo Institute of Technology, Department of Metallurgy and Ceramics Science, Tokyo, 152-8552, Japan
Ernst Kozeschnik
Affiliation:
ernst.kozeschnik@iws.tugraz.at, Graz University of Technology, Institute for Materials Science, Welding and Forming, Graz, 8010, Austria
Arno Bartels
Affiliation:
bartels@tu-harburg.de, Technical University Hamburg-Harburg, Materials Science and Technology, Hamburg, 21073, Germany
Rainer Gerling
Affiliation:
rainer.gerling@gkss.de, GKSS Research Centre, Institute for Materials Research, Geesthacht, 21502, Germany
Sascha Kremmer
Affiliation:
skremmer@bstg.buag.co.at, Bohler Schmiedetechnik GmbH&CoKG, R&D, Kapfenberg, 8605, Austria
Get access

Abstract

Phase transformations and phase transition temperatures in several Ti-45Al and Ti-45Al-(5-10)Nb (at%) alloys were investigated experimentally and compared to thermodynamic calculation. The present study combines scanning electron microscopy, high-energy and conventional X-ray diffraction as well as differential scanning calorimetry for the characterization of the prevailing phases and phase transformations. Thermodynamic simulation based on the CALPHAD method was used to predict phase stabilities. Modifications of a commercial available database, based on the thermo-physical measurements and long-term annealing treatments, were introduced in order to achieve better agreement between calculated and experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Appel, F., Oehring, M., “γ-Titanium Aluminide Alloys: Alloy Design and Properties”, Titanium and Titanium Alloys, ed. Peters, C. and Leyens, M. (WILEY-VCH, 2003) pp. 89152.Google Scholar
[2] Kestler, H., Clemens, H., “Production, Processing and Application of γ-(TiAl)-Based Alloys”, Titanium and Titanium Alloys, ed. Peters, C. and Leyens, M. (WILEY-VCH, 2003), pp.351–392.Google Scholar
[3] Clemens, H., Kestler, H., Adv. Eng. Mater. 2, 551 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
[4] Appel, F., Brossmann, U., Christoph, U., Eggert, S., Janschek, P., Lorenz, U., Müllauer, J., Oehring, M., and JDH. Paul, Adv. Eng. Mater. 2, 699 (2000)10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J3.0.CO;2-J>CrossRef3.0.CO;2-J>Google Scholar
[5] Clemens, H., Bartels, A., Bystrzanowski, S., Chladil, H.F., Leitner, H., Dehm, G., Gerling, R., Schimansky, F.P., Intermetallics 14, 1380 (2006).CrossRefGoogle Scholar
[6] Saunders, N., in Gamma Titanium Aluminides 1999, edited by Kim, Y-W., Dimiduk, D.M. and Loretto, M.H. (TMS, Warrendale PA, 1999), p. 183.Google Scholar
[7] Beschliesser, M., Clemens, H., Kestler, H. and Jeglitsch, F., Scripta Materialia 49, 279 (2003).CrossRefGoogle Scholar
[8] Malinov, S., Novoselova, T., and Sha, W., Mat. Sci. and Eng. A386, 344 (2004).10.1016/S0921-5093(04)00985-2CrossRefGoogle Scholar
[9] Appel, F., Oehring, M. and Wagner, R., Intermetallics 8, 1283 (2000).10.1016/S0966-9795(00)00036-4CrossRefGoogle Scholar
[10] Chladil, H.F., Clemens, H., Leitner, H., Bartels, A., Gerling, R., Schimansky, F.P., Kremmer, S., Intermetallics 14, 1194 (2006).10.1016/j.intermet.2005.11.016CrossRefGoogle Scholar
[11] Chladil, H.F., Clemens, H., Leitner, H., Bartels, A., Marketz, W.T., Adv. Eng. Mater. 7, 1131 (2005).10.1002/adem.200500153CrossRefGoogle Scholar
[12] Gerling, R., Clemens, H., Schimansky, F.P., Adv. Eng. Mater. 6, 23 (2004).10.1002/adem.200310559CrossRefGoogle Scholar
[13] Sundman, B., Jansson, B., and Andersson, J.-O., CALPHAD 9, 153 (1985).CrossRefGoogle Scholar
[14] Kozeschnik, E. and Buchmayr, B., “Mathematical Modelling of Weld Phenomena 5”,edited by Cerjak, H. and Bhadeshia, H.K.D.H. (IOM, London 2001), p. 349.Google Scholar
[15] Ansara, I., Int. Met. Reviews 22, 20 (1979).Google Scholar
[16] Saunders, N. and Miodownik, A.P., CALPHAD-A Comprehensive Guide (Elsevier Science, New York, 1998).Google Scholar
[17] K.-D Liss, Bartels, A., Clemens, H., Bystrzanowski, S., Stark, A., Buslaps, T.,Schimansky, F.P., Gerling, R., Scheu, C., Schreyer, A., Acta Materialia 54, 3721 (2006).Google Scholar
[18] Takeyama, M., Ohmura, Y., Kikuchi, M., Matsuo, T., Intermetallics 6, 643646 (1998)10.1016/S0966-9795(98)00049-1CrossRefGoogle Scholar
[19] Takeyama, M., Kobayashi, S., Intermetallics 13, 993(2005).10.1016/j.intermet.2004.12.014CrossRefGoogle Scholar
[20] Takeyama, M., Kikuchi, M., Mater Jpn 35, 1058 (1996).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On The Influence of Nb on the Transition Temperatures of Titanium Aluminides
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On The Influence of Nb on the Transition Temperatures of Titanium Aluminides
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On The Influence of Nb on the Transition Temperatures of Titanium Aluminides
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *