Hostname: page-component-797576ffbb-gvrqt Total loading time: 0 Render date: 2023-12-07T17:55:36.063Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

On the Dynamical Spin Susceptibility of Paramagnetic La2CuO4

Published online by Cambridge University Press:  16 February 2011

H. Winter
Kemforschungszentrum Karlsruhe, INFP, P.O. Box 3640, D-7500 Karlsruhe, Federal Republic of Germany
Z. Szotek
SERC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
W. M. Temmerman
SERC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
Get access


The self-consistent one-electron wave functions and energy bands obtained by the LMTO-ASA method within the local density approximation (LDA) are used to calculate the wave vector and frequency dependent non-interacting spin susceptibility of paramagnetic La2CuO4 in the body-centred tetragonal (bct) structure. We show that the tendency towards the antiferromagnetic instability is strongly dependent on the effects of the matrix elements which lead to a substantial depression of the susceptibility, especially near the X-point. The Fermi surface nesting properties, although important for the susceptibility, are by far not sufficient for the instability and the interband transitions turn out to be of great significance. Our results indicate that the susceptibility is at least 3 times too small to drive this system through a transition to the antiferromagnetic state, and we discuss possible reasons for this failure.

Research Article
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Aharony, A., Birgeneau, R.J., Coniglio, A., Kastner, M.A. and Stanley, H.E., Phys. Rev. Lett. 60, 1330 (1988).Google Scholar
2. Pickett, W.E., Rev. Mod. Phys. 61, 433 (1989).Google Scholar
3. Leung, T.C., Wang, X.W. and Harmon, B.N., Phys. Rev. B 37, 384 (1988).Google Scholar
4. Steme, P.A. and Wang, C.S., Phys. Rev. B 37, 7472 (1988).Google Scholar
5. Zaanen, J., Jepsen, J., Gunnarson, O., Paxton, A.T. and Andersen, O.K., Physics C 153–155, 1636 (1988).Google Scholar
6. Guo, G.Y., Temmerman, W.M. and Stocks, G.M., J. Phys. C 21, L103 (1988).Google Scholar
7. Temmerman, W.M., Szotek, Z. and Guo, G.Y., J. Phys. C 21, L867 (1988).Google Scholar
8. Stenzel, E. and Winter, H., J.Phys. F 16, 1789 (1986).Google Scholar
9. Stenzel, E., Winter, H., Szotek, Z. and Temmerman, W.M., Z. Phys. B 70, 173 (1988).Google Scholar
10. Winter, H., Szotek, Z. and Temmerman, W.M., Solid State Commun. 1990 (in press).Google Scholar
11. Xu, J.-H., Watson-Yang, T.J. and Freeman, A.J., Phys. Lett. A 120, 489 (1987).Google Scholar
12. Stenzel, E. and Winter, H., J. Phys. F 15, 1571 (1985).Google Scholar
13. Winter, H., Szotek, Z. and Temmerman, W.M., Z. Phys. B 1990 (in press).Google Scholar
14. Moruzzi, V.L., Janak, J.F. and Williams, A.R., Calculated Electronic Properties of Metals, (Pergamon Press Inc., New York, 1978), p.96.Google Scholar
15. Jones, R.O. and Gunnarsson, O., Rev. Mod. Phys. 61, 689 (1989).Google Scholar
16. Temmerman, W.M., Sterne, P.A., Guo, G.Y. and Szotek, Z., Molecular Simulation 4, 153 (1989).Google Scholar