Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-19T01:29:28.808Z Has data issue: false hasContentIssue false

Ohmic Contacts to n-Type 6H-SiC Without Post-Annealing

Published online by Cambridge University Press:  15 February 2011

Tokuyuki Teraji
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Shiro Hara
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Hideyo Okushi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Koji Kajimura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

We formed titanium Ohmic contacts to n-type 6H-SiC epitaxial layer byreducing the Schottky barrier heights. The barrier heights were reduced enough toform the Ohmic contacts by releasing the Fermi level from pinning through makingatomically-flat surfaces. The current transport by thermionic emission wasdominant at the Ti/SiC interface. Since the Ti contacts were formed without postannealing,surfaces of the Ti electrodes were flat and homogeneous maintaining asdepositedstructures. Contact resistivity was (6±1)×10−3 Ω-cm2, which is comparableto that of the annealed Ni contact formed on the SiC epitaxial layer with the samecarrier concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Edmond, J. A., Kim, H. J., and Davis, R. F. in Rapid Th erm al Processing edited by Sedgwick, T. O., Seidel, T. E., and Tsaur, B. Y. (Mater. Res. Soc. Proc. 52, Pittsburgh, PA, 1986) pp. 157164.Google Scholar
2. Ruff, M., Mitlehner, H. and Helbig, R., IEEE Trans. Electron. Devices. 41, 1040 (1994).Google Scholar
3. Schottky, W., Naturwissenschaften, 26, 843 (1938).Google Scholar
4. Tyagi, M. S., Metal-Semiconductor Schottky Barrier Junctions and Their Applications, edited by Sharma, B. L. (Plenum Press, New York, 1984), p. 55.Google Scholar
5. Kurtin, S., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 22, 1433 (1969).Google Scholar
6. Bardeen, J., Phy. Rev. 71, 717 (1947).Google Scholar
7. Aoki, M. and Kawarada, H., Jpn. J. Appl. Phys. 33 L708 (1994).Google Scholar
8. Fan, J. F., Oigawa, H. and Nannichi, Y., Jap. J. Appl. Phy. 27, L2125 (1988).Google Scholar
9. Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, Krishnan, Appl. Phys. Lett. 56, 656 (1990)Google Scholar
10. Watanabe, S., Shigeno, M., Nakayama, N., and Ito, T., Jpn. J. Appl. Phys 30, 3575 (1991).Google Scholar
11. Ohishi, K. and Hattori, T., Jpn. J. Appl. Phys. 33, L675 (1994).Google Scholar
12. Berger, H. H., Solid State. Electron. 15, 145 (1972).Google Scholar
13. Yu, A. Y. C., Solid State. Electron. 13, 239 (1970).Google Scholar
14. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, 1988) p. 113.Google Scholar
15. Watanabe, S., Sugita, Y., Surf. Sci. 327, 1 (1995).Google Scholar