Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-r9vz2 Total loading time: 0.166 Render date: 2021-08-01T18:25:19.990Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Observation of the Morphology of ZnO:Al Nanocoating by Pulsed Laser Deposition on ZnS:Ag Phosphor for Degradation Repression

Published online by Cambridge University Press:  11 February 2011

Sanshiro Nagare
Affiliation:
Nara Machinery Co., Ltd, 2–5–7 Jonan-jima, Ohta-ku, Tokyo, 143–0002, Japan
Michael Ollinger
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, Florida, 32611, U.S.A.
Rajiv Singh
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, Florida, 32611, U.S.A.
Mamoru Senna
Affiliation:
Keio University, Faculty of Science and Technology, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama, 223–8522, Japan
Get access

Abstract

Degradation due to electron beam irradiation is a significant problem for ZnS based phosphors, particularly for flat panel displays. In this study, ZnS:Ag phosphor particles were coated by nanoparticles of ZnO:Al by pulsed laser deposition (PLD), to suppress the cathodoluminescence (CL) degradation process under electron bombardment at 15 k V. The pressure of the vacuum chamber and the deposition time were changed to control the morphology of the coating, i.e. thickness, continuity, and uniformity. CL degradation of the phosphors was slowed down for all cases by the nanocoating. The relationship between the CL degradation and the morphology of the coating material was examined by an SEM combined with a simultaneous CL measurement device. Degradation mechanisms were elucidated in terms of the morphology of the coating material and the change in the surface atomic species during irradiation of the electron beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Swart, H.C., Greeff, A.P., Holloway, P.H., Berning, G.L.P., Appl. Surf. Sci. 140, 63 (1999)CrossRefGoogle Scholar
Swart, H.C., Oosthuizen, L., Holloway, P.H., Berning, G.L.P., Surface and Interface Analysis, 26, 337 (1998)3.0.CO;2-E>CrossRefGoogle Scholar
Igarashi, T., Kusunoki, T., Ohno, K., Isobe, T., Senna, M., Materials Research Bulletin, 36, 13171324 (2001)CrossRefGoogle Scholar
[4] Ollinger, M., Singh, R.K., Cracium, V., Fitz-Gerald, J., Holloway, P.H., The fifth international conference on the science and technology of display phosphors, September 8–10, San Diego, California, 349 (1999)Google Scholar
[5] Lewis, B., Anderson, J.C., Nucleation and growth of thin films, New York Academic Press (1978)Google Scholar
[6] Sasaki, T., Terauchi, S., Koshizaki, N., Umehara, H., Appl. Surf. Sci. 127–129, 398402 (1998)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Observation of the Morphology of ZnO:Al Nanocoating by Pulsed Laser Deposition on ZnS:Ag Phosphor for Degradation Repression
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Observation of the Morphology of ZnO:Al Nanocoating by Pulsed Laser Deposition on ZnS:Ag Phosphor for Degradation Repression
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Observation of the Morphology of ZnO:Al Nanocoating by Pulsed Laser Deposition on ZnS:Ag Phosphor for Degradation Repression
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *