Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-9v52d Total loading time: 0.174 Render date: 2021-10-26T11:21:22.817Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Observation of Asymmetric Wafer Bending for 3C-SiC Thin Films Grown on Misoriented Silicon Substrates

Published online by Cambridge University Press:  01 February 2011

Marcin Zielinski
Affiliation:
mzielinski@novasic.com, NOVASiC, R&D, CRHEA CNRS, rue Bernard Gregory, Valbonne, 06560, France
Marc Portail
Affiliation:
mpo@crhea.cnrs.fr, Centre de Recherche sur l'Hétéroépitaxie et ses Applications, CRHEA-CNRS, UPR10, rue Bernard Gregory, Valbonne, 06560, France
Thierry Chassagne
Affiliation:
tchassagne@novasic.com, NOVASiC, Savoie Technolac, Arche Bât.4, BP267, Le Bourget du Lac cedex, 73375, France
Slawomir Kret
Affiliation:
kret@ifpan.edu.pl, Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw, 02668, Poland
Maud Nemoz
Affiliation:
mn@crhea.cnrs.fr, Centre de Recherche sur l'Hétéroépitaxie et ses Applications, CRHEA-CNRS, UPR10, rue Bernard Gregory, Valbonne, 06560, France
Yvon Cordier
Affiliation:
yc@crhea.cnrs.fr, Centre de Recherche sur l'Hétéroépitaxie et ses Applications, CRHEA-CNRS, UPR10, rue Bernard Gregory, Valbonne, 06560, France
Get access

Abstract

We present an experimental study of asymmetric wafer deformation for 3C-SiC layers grown on deliberately misorientated silicon substrates. An asymmetric curvature has been observed both on (100) and (111) oriented layers. In this work we focus on the (100) oriented samples. The curvature of the wafers is studied as a function of wafer thickness and offcut angle. We look for the correlations between the observed asymmetric strain relaxation and the layer morphology and microstructure. We claim that different defect pattern, measured along [110] and [1-10] direction can be at the origin of almost complete relaxation of mismatch strain along the offcut direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schöner, A., Krieger, M., Pensl, G., Abe, M., Nagasawa, H., Chem. Vap. Deposition, 12 (2006), 523 CrossRefGoogle Scholar
2. Cordier, Y., Portail, M., Chenot, S., Tottereau, O., Zielinski, M., Chassagne, T., Proceedings of ICSCRM 2008, in press, Materials Science Forum (2008).Google Scholar
3. Nishino, S., Suhara, H., Ono, H., Matsunami, H.: J. App. Phys. 61, (1987) 4889 CrossRefGoogle Scholar
4. Zielinski, M., Leycuras, A., Ndiaye, S., Chassagne, T., Appl. Phys. Lett. 89 (2006) 131906.CrossRefGoogle Scholar
5. Zielinski, M., Portail, M., Chassagne, T., Cordier, Y., Proceedings of ICSCRM 2008, in press, Materials Science Forum (2008).Google Scholar
6. Nagasawa, H., Yagi, K., Kawahara, T., Hatta, N., Chem. Vap. Deposition 12 (2006) 502.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Observation of Asymmetric Wafer Bending for 3C-SiC Thin Films Grown on Misoriented Silicon Substrates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Observation of Asymmetric Wafer Bending for 3C-SiC Thin Films Grown on Misoriented Silicon Substrates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Observation of Asymmetric Wafer Bending for 3C-SiC Thin Films Grown on Misoriented Silicon Substrates
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *