Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-vq995 Total loading time: 0.256 Render date: 2021-10-18T21:38:55.288Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

n-Type Diamond Growth by Phosphorus Doping

Published online by Cambridge University Press:  01 February 2011

Hiromitsu Kato
Affiliation:
hiromitsu.kato@aist.go.jp, AIST, Nanotechnology Research Institute, 1-1-1 umezono, Tsukuba, 305-8568, Japan, +81-29-861-3461, +81-29-861-2773
Toshiharu Makino
Affiliation:
toshiharu-makino@aist.go.jp, AIST, Nanotechnology Research Institute, 1-1-1 umezono, Tsukuba, 305-8568, Japan
Satoshi Yamasaki
Affiliation:
s-yamasaki@aist.go.jp, AIST, Nanotechnology Research Institute, 1-1-1 umezono, Tsukuba, 305-8568, Japan
Hideyo Okushi
Affiliation:
h.okushi@aist.go.jp, AIST, Nanotechnology Research Institute, 1-1-1 umezono, Tsukuba, 305-8568, Japan
Get access

Abstract

Phosphorus doping on (001)-oriented diamond is introduced and compared with results achieved on (111) diamond. Detailed procedures, conditions, doping characteristics, and recent electrical properties of (001) phosphorus-doped diamond films are described. Now the highest mobility is reached to be ∼780 cm2/Vs at room temperature. The carrier compensation ratio, which is still high around 50-80 %, is the most important issues for (001) phosphorus-doped diamond to improve its electrical property. The origin of compensators in phosphorus-doped diamond is investigated, while yet to be identified.

Ultraviolet light emitting diode with p-i-n junction structure is also introduced using (001) n-type diamond. A strong UV light emission at around ∼240 nm is observed even at room temperature. High performance of diamond UV-LED is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Crystal Growth 62, 642 (1983).CrossRefGoogle Scholar
[2] Yamanaka, S., Watanabe, H., Masai, S., Takeuchi, D., Okushi, H., and Kjimura, K., Japan J. Appl. Phys. 37, L1129 (1998).CrossRefGoogle Scholar
[3] Collins, A. T. and Lightowler, E. C. in: The properties of Diamond, edited by Field, J. E. (Academic Press, London, 1979).Google Scholar
[4] Farrer, R., Solid State Commun. 7, 685 (1969).10.1016/0038-1098(69)90593-6CrossRefGoogle Scholar
[5] Koizumi, S., Kamo, M., Sato, Y., Ozaki, H., and Inuzuka, T., Appl. Phys. Lett. 71, 1065 (1997).CrossRefGoogle Scholar
[6] Nesládek, M., Meykens, K., Haenen, K., Knuyt, G., Stals, L. M., Teraji, T., and Koizumi, S., Phys. Rev. B 59, 14852 (1999).10.1103/PhysRevB.59.14852CrossRefGoogle Scholar
[7] Gheeraert, E., Koizumi, S., Teraji, T., and Kanda, H., Solid State Commun. 113, 577 (2000).CrossRefGoogle Scholar
[8] Sternschulte, H., Thonke, K., Sauer, R., and Koizumi, S., Phys. Rev. B 59, 12949 (1999).CrossRefGoogle Scholar
[9] Hasegawa, M., Teraji, T., and Koizumi, S., Appl. Phys. Lett. 79, 3068 (2001).CrossRefGoogle Scholar
[10] Koizumi, S., Watanabe, K., Hasegawa, M., Kanda, H., Science 292, 1899 (2001).CrossRefGoogle Scholar
[11] Suzuki, M., Koizumi, S., Katagiri, M., Ono, T., Sakuma, N., Yoshida, H., Sakai, T., Uchikoga, S., phys. Stat. sol. (a) 203, 3128 (2006).10.1002/pssa.200671124CrossRefGoogle Scholar
[12] Mizuochi, N., Watanabe, H., Okushi, H., Yamasaki, S., Niitsuma, J., and Sekiguchi, T., Appl. Phys. Lett. 88, 091912 (2006).CrossRefGoogle Scholar
[13] Kato, H., Yamasaki, S., Okushi, H., Appl. Phys. Lett. 86, 222111 (2005).CrossRefGoogle Scholar
[14] Makino, T., Tokuda, N., Kato, H., Ogura, M., Watanabe, H., Ri, S. G., Yamasaki, S., and Okushi, H., Japan J. Appl. Phys. 45, L1042 (2006).CrossRefGoogle Scholar
[15] Ueda, T., Nishino, H., and Matsunami, H., J. Cryst. Growth 104, 695 (1990).CrossRefGoogle Scholar
[16] Miyazaki, T., Kato, H., Ri, S. G., Ogura, M., Tokuda, N., and Yamasaki, S., Superlattices and Microstructures 40, 574 (2006).CrossRefGoogle Scholar
[17] Pernot, J., Tavares, C., Gheeraert, E., Bustarret, E., Katagiri, M., and Koizumi, S., Appl. Phys. Lett. 89, 122111 (2006).CrossRefGoogle Scholar
[18] Jones, R., Lowther, J. E., and Goss, J., Appl. Phys. Lett. 69, 2489 (1996).10.1063/1.117715CrossRefGoogle Scholar
[19] Miyazaki, T. and Yamasaki, S., Physica B 376-377, 304 (2006).CrossRefGoogle Scholar
[20] Kato, H., Yamasaki, S., and Okushi, H., Diamond Relat. Mater. 16, 796 (2007).10.1016/j.diamond.2006.11.085CrossRefGoogle Scholar
[21] Mizuochi, N., Ogura, M., Watanabe, H., Isoya, J., Okushi, H., and Yamasaki, S., Diamond Relat. Mater. 13, 2096 (2004).CrossRefGoogle Scholar
[22] Kato, H., Makino, T., Yamasaki, S., and Okushi, H., J. Phys. D: Appl. Phys. 40, 6189 (2007).CrossRefGoogle Scholar
[23] Okushi, H., Watanabe, H., Yamasaki, S., and Kanno, S., Phys. Stat. Sol. (a) 203, 3226 (2006).10.1002/pssa.200671410CrossRefGoogle Scholar
[24] Watanabe, H. and Okushi, H., Japan J. Appl. Phys. 39, L835 (2000).10.1143/JJAP.39.L835CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

n-Type Diamond Growth by Phosphorus Doping
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

n-Type Diamond Growth by Phosphorus Doping
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

n-Type Diamond Growth by Phosphorus Doping
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *