Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-47mcc Total loading time: 0.297 Render date: 2022-01-23T13:05:41.077Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Novel Synthesis of Silicon and Germanium Nanocrystallites

Published online by Cambridge University Press:  17 March 2011

Susan M. Kauzlarich
Affiliation:
Department of Chemistry University of California at Davis One Shields Ave Davis, CA 95616, U.S.A
Qi Liu
Affiliation:
Department of Chemistry University of California at Davis One Shields Ave Davis, CA 95616, U.S.A
Shih-Chieh Yin
Affiliation:
Department of Chemistry University of California at Davis One Shields Ave Davis, CA 95616, U.S.A
Howard W. H. Lee
Affiliation:
Lawrence Livermore National Laboratory P. O. Box 808 Mail Stop L-174 Livermore, CA 94551
Boyd Taylor
Affiliation:
Lawrence Livermore National Laboratory P. O. Box 808 Mail Stop L-174 Livermore, CA 94551
Get access

Abstract

Interest in the synthesis of semiconductor nanoparticles has been generated by their unusual optical and electronic properties arising from quantum confinement effects. We have synthesized silicon and germanium nanoclusters by reacting Zintl phase precursors with either silicon or germanium tetrachloride in various solvents. Strategies have been investigated to stabilize the surface, including reactions with RLi and MgBrR (R = alkyl). This synthetic method produces group IV nanocrystals with passivated surfaces. These nanoparticle emit over a very large range in the visible region. These particles have been characterized using HRTEM, FTIR, UV-Vis, solid state NMR, and fluorescence. The synthesis and characterization of these nanoclusters will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heath, J. R., Science 258, 1131 (1992).CrossRefGoogle Scholar
2. Heath, J. R. and LeGoues, F. K., Chem. Phys. Lett. 208, 263 (1993).CrossRefGoogle Scholar
3. Heath, J. R., Shiang, J. J., and Alivisatos, A. P., J. Chem. Phys. 101, 1607 (1994).CrossRefGoogle Scholar
4. Heath, J. R., Williams, R. S., Shiang, J. J., Wind, S. J., Chu, J., D'Emic, C., Chen, W., Stanis, C. L., and Bucchignano, J. J., J. Phys. Chem. 100, 3144 (1996).CrossRefGoogle Scholar
5. Wilcoxon, J. P., Samara, G. A., and Provencio, P. N., Phys. Rev. B 60, 2704 (1999).CrossRefGoogle Scholar
6. Wilcoxon, J. P. and Samara, G. A., Appl. Phys. Lett. 74, 3164 (1999).CrossRefGoogle Scholar
7. Fojtik, A., Weller, H., Fiechter, S., and Henglein, A., Chem. Phys. Lett. 134, 477 (1987).CrossRefGoogle Scholar
8. Fojtik, A. and Henglein, A., Chem. Phys. Lett. 221, 363 (1994).CrossRefGoogle Scholar
9. Littau, K. A., Szajowshki, P. J., Muller, A. J., Kortan, A. R., and Brus, L. E., J. Phys. Chem. 97, 1224 (1993).CrossRefGoogle Scholar
10. Brus, L., J. Phys. Chem. 98, 3575 (1994).CrossRefGoogle Scholar
11. Brus, L. E., Szajowski, P. F., Wilson, W. L., Harris, T. D., Schuppler, S., and Citrin, P. H., J. Am. Chem. Soc. 117, 2915 (1995).CrossRefGoogle Scholar
12. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowshki, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).CrossRefGoogle Scholar
13. Buuren, T. van, Dinh, L. N., Chase, L. L., Siekhaus, W. J., and Terminello, L. J., Phys. Rev. Lett. 80, 3803 (1998).CrossRefGoogle Scholar
14. Bley, R. A. and Kauzlarich, S. M., J. Am. Chem. Soc. 118, 12461 (1996).CrossRefGoogle Scholar
15. Bley, R. A. and Kauzlarich, S. M., in Nanoparticles in Solids and Solutions (Fendler, J. H. and Dékány, I., eds.), (Kluwer Academic Press, the Netherlands, 1996) p. 467.CrossRefGoogle Scholar
16. Bley, R. A. and Kauzlarich, S. M., in Nanoparticles and Nanostructures Films (Fendler, J. H., ed.), (Wiley-VCH, Weinheim, 1998) p. 101.CrossRefGoogle Scholar
17. Yang, C.-S., Bley, R. A., Kauzlarich, S. M., Lee, H. W. H., and Delgado, G. R., J. Am. Chem. Soc. 121, 5191 (1999).CrossRefGoogle Scholar
18. Taylor, B. R., Kauzlarich, S. M., Lee, H. W. H., and Delgado, G. R., Chem. Mater. 10, 22 (1998).CrossRefGoogle Scholar
19. Taylor, B. R., Kauzlarich, S. M., Delgado, G. R., and Lee, H. W. H., Chem. Mater. 11, 2493 (1999).CrossRefGoogle Scholar
20. Haushalter, R. C., Angew. Chem., Int. Ed. Engl. 22, 558 (1983).CrossRefGoogle Scholar
21. Haushalter, R. C., O'Connor, C. J., Haushalter, J. P., Umarji, A. M., and Shenoy, G. K., Angew. Chem., Int. Ed. Eng. 23, (1984).CrossRefGoogle Scholar
22. Corbett, J. D., Chem. Rev. 85, 383 (1985).CrossRefGoogle Scholar
23. O'Connor, C. J., Jung, J.-S., and Zhang, J. H., in Chemistry, Structure, and Bonding of Zintl Phases and Ions (Kauzlarich, S. M., ed.), (VCH Publishers, Inc., New York, 1996) p. 275.Google Scholar
24. Busmann, V. E., Z. Anorg. Allg. Chem. 313, 90 (1961).CrossRefGoogle Scholar
25. Hey-Hawkins, E. and Schnering, H. G. von, Chem. Ber. 124, 1167 (1990).CrossRefGoogle Scholar
26. Bansal, A., Li, X., Lauermann, I., and Lewis, N. S., J. Am. Chem. Soc. 118, 7225 (1996).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Novel Synthesis of Silicon and Germanium Nanocrystallites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Novel Synthesis of Silicon and Germanium Nanocrystallites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Novel Synthesis of Silicon and Germanium Nanocrystallites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *