Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-rtmr9 Total loading time: 0.157 Render date: 2021-06-17T17:39:32.468Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene

Published online by Cambridge University Press:  17 April 2012

Gustavo Brunetto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Bruno I. Santos
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Pedro A. S. Autreto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Leonadro D. Machado
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Ricardo P. B. dos Santos
Affiliation:
Departamento de Física, IGCE, UNESP, Rio Claro, SP, 13506-900, Brazil.
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
Get access

Abstract

Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Peng, H., Chen, D., Huang, J., Chikkannanavar, S., Hanisch, J., Jain, M., Peterson, D., Doorn, S., Lu, Y., Zhu, Y., et al. ., Phys. Rev. Lett. 101, 145501 (2008).CrossRefGoogle Scholar
2. Novoselov, , Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., , I. Grigorieva, , and Firsov, A., Science 306, 666 (2004).CrossRefGoogle Scholar
3. Flores, M., Autreto, P., Legoas, S., and Galvao, D., Nanotechnology 20, 465704 (2009).CrossRefGoogle Scholar
4. Cheng, S., Zou, K., Okino, F., Gutierrez, H., Gupta, A., Shen, N., Eklund, P., Sofo, J., and Zhu, J., Phys. Rev. B 81, 205435 (2010).CrossRefGoogle Scholar
5. Withers, F., Dubois, M., and Savchenko, A., Phys. Rev. B 82, 73403 (2010).CrossRefGoogle Scholar
6. Stankovich, S., Dikin, D., Piner, R., Kohlhaas, K., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S., and Ruoff, R., Carbon 45, 1558 (2007).CrossRefGoogle Scholar
7. Gilje, S., Han, S., Wang, M., Wang, K., and Kaner, R., Nano Lett. 7, 3394 (2007).CrossRefGoogle Scholar
8. Gomez-Navarro, C., Weitz, R., Bittner, A., Scolari, M., Mews, A., Burghard, M., and Kern, K., Nano Lett. 7, 3499 (2007).CrossRefGoogle Scholar
9. Ruoff, R., Nature Nanotechnology 3, 10 (2008).CrossRefGoogle Scholar
10. Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., and De Heer, W., Phys. Rev. Lett. 101, 26801 (2008).CrossRefGoogle Scholar
11. Kaiser, A., Gómez-Navarro, C., Sundaram, R., Burghard, M., and Kern, K., Nano Lett. 9, 1787 (2009).CrossRefGoogle Scholar
12. Sofo, J., Chaudhari, A., and Barber, G., Phys. Rev. B, 75, 153401, (2007).CrossRefGoogle Scholar
13. Ryu, S., Han, M., Maultzsch, J., Heinz, T., Kim, P., Steigerwald, M., and Brus, L., Nano Lett. 8, 4597 (2008).CrossRefGoogle Scholar
14. Elias, D., Nair, R., Mohiuddin, T., Morozov, S., Blake, P., Halsall, M., Ferrari, A., Boukhvalov, D., Katsnelson, M., Geim, A., et al. . , Science 323, 610 (2009).CrossRefGoogle Scholar
15. Leenaerts, O., Peelaers, H., Hernandez-Nieves, A., Partoens, B. and Peeters, F., Arxiv preprint arXiv:1009.3847 (2010).Google Scholar
16. Blankenburg, S., Bieri, M., Fasel, R., Mullen, K., Pignedoli, C. A. and Passerone, D., Small 6, 2266 (2010).CrossRefGoogle Scholar
17. Du, A. J., Zhu, Z. H., and Smith, S. C., J. Am. Chem. Soc. 132, 2876 (2010).CrossRefGoogle Scholar
18. Jiang, D. E., Cooper, V. R., and Dai, S., Nano Lett. 9, 4019 (2009).CrossRefGoogle Scholar
19. Li, Y. F., Zhou, Z., Shen, P. W., and Chen, Z. F., Chem. Comm. 46, 3672 (2010).CrossRefGoogle Scholar
20. Baughman, R., Eckhardt, H., and Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
21. Baughman, R. H., Galvao, D. S., Cui, C., Wang, Y. and Tománek, D., Chem. Phys. Lett. 204, 8, (1993).CrossRefGoogle Scholar
22. Enyashin, A. and Ivanovskii, A., Phys. St. Solid (b) 248, 1879 (2011).CrossRefGoogle Scholar
23. Schulman, J. M. and Disch, R. L., J. Phys Chem. A 111, 10010 (2007).CrossRefGoogle Scholar
24. Treier, M., Pignedoli, C., Laino, T., Rieger, R., Mullen, K., Passerone, D., and Fasel, R., Nature Chem. 3 61 (2010).CrossRefGoogle Scholar
25. Otero, G., Biddau, G., Sanchez-Sanchez, C., Caillard, R., Lopez, M. F., Rogero, C., Palomares, F. J., Cabello, N., Basanta, M. A., Ortega, J., Mendez, J., Echavarren, A. M., Perez, R., Gomez-Lor, B., and Martin-Gago, J. A., Nature 454, 865 (2008).CrossRefGoogle Scholar
26. Hatanaka, M., Chem. Phys. Lett. 488, 187 (2010).CrossRefGoogle Scholar
27. Bieri, M., Treier, M., Cai, J., A it Mansour, K., Ruffieux, P., Groning, O., Groning, P., Kastler, M., Rieger, R., Feng, X., et al. ., Chem. Commun. 45, 6919 (2009).CrossRefGoogle Scholar
28. Schrier, J., J. Phys. Chem. Lett. 1, 2284 (2010).CrossRefGoogle Scholar
29. Delley, B., J. Chem. Phys. 88, 2547 (1988).Google Scholar
30. Delley, B., J. Chem. Phys. 113, 7756 (2000), DMol3 is available from Accelrys, Inc., as part of Materials Studio and the Cerius2 program suites http://www.accelrys.com.CrossRefGoogle Scholar
31. Porezag, D., Frauenheim, T., Ohler, T. K, Seifert, G., and Kaschner, R., Phys. Rev. B 51, 12947 (1995).CrossRefGoogle Scholar
32. Aradi, B., Hourahine, B., and Frauenheim, T., J. Phys. Chem. A 111, 5678 (2007).CrossRefGoogle Scholar
33. Gutzleretal, R.., Chem. Commun. 4456 (2009).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Nonzero Gap Two-dimensional Carbon Allotrope from Porous Graphene
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *