Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-tkzrn Total loading time: 0.148 Render date: 2021-06-24T00:06:52.502Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Nonvolatile Power-Gating FPGA Based on Pseudo-Spin-Transistor Architecture with Spin-Transfer-Torque MTJs

Published online by Cambridge University Press:  15 June 2012

Shuu’ichirou Yamamoto
Affiliation:
Department of Information Processing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan CREST, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi 332-0012, Japan
Yusuke Shuto
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan CREST, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi 332-0012, Japan
Satoshi Sugahara
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan CREST, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi 332-0012, Japan
Get access

Abstract

We proposed and computationally analyzed a nonvolatile power-gating field programmable gate array (NVPG-FPGA) based on pseudo-spin-transistor architecture with spin-transfer-torque magnetic tunnel junctions (STT-MTJs). The circuit employs nonvolatile static random memory (NV-SRAM) cells and nonvolatile flip-flops (NV-FFs) as the storage circuits. The circuit configuration and microarchitecture are compatible with SRAM-based FPGAs, and the additional nonvolatile memory functionality makes it possible to execute efficient power-gating (PG). Break-even time (BET) for the nonvolatile configuration logic block (NV-CLB) of the NVPG-FPGA was also analyzed, and reduction techniques of the BET were proposed, which allows highly efficient PG operations with a fine granularity.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Xilinx, http://www.xilinx.com/ Google Scholar
2. Yamamoto, S., Shuto, Y. and Sugahara, S., 71st Autumn Meet. Jpn. Soc. Appl. Phys. (2010) paper 16a-A-2.Google Scholar
3. Yamamoto, S. and Sugahara, S., Jpn. J. Appl. Phys. 48, 043001 (2009).CrossRefGoogle Scholar
4. Shuto, Y., Yamamoto, S. and Sugahara, S., J. Appl. Phys. 105, 07C933 (2009) .CrossRefGoogle Scholar
5. Yamamoto, S., Shuto, Y. and Sugahara, S., Jpn. J. Appl. Phys. 49, 090204 (2010).CrossRefGoogle Scholar
6. Yamamoto, S., Shuto, Y. and Sugahara, S., Electronics Lett. 47, 1027 (2011).CrossRefGoogle Scholar
7. Hayakawa, J., Ikeda, S., Matsukura, F., Takahashi, H., and Ohno, H., Jpn. J. Appl. Phys. 44, L587(2005).CrossRefGoogle Scholar
8. Berkeley Predictive Technology Model, http://www.eas.asu.edu/∼ptm.Google Scholar
9. Shuto, Y., Yamamoto, S. and Sugahara, S., Jpn. J. Appl. Phys. 51, 040212 (2012).CrossRefGoogle Scholar
10. Shuto, Y., Yamamoto, S. and Sugahara, S., 2012 4th IEEE International Memory Workshop (2012).Google Scholar
11. Zhao, W. et al. ., ACM Trans. Embedded Comp. Sys. 9 (2009) Article 14.Google Scholar
12. Suzuki, D. et al. ., 2009 Symp. VLSI Circuits Dig. Tech. Papers (2009) p.80.Google Scholar
13. Xilinx, Virtex-5 FPGA User Guide UG190 (v5.3) May 17, 2010, p.190.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nonvolatile Power-Gating FPGA Based on Pseudo-Spin-Transistor Architecture with Spin-Transfer-Torque MTJs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nonvolatile Power-Gating FPGA Based on Pseudo-Spin-Transistor Architecture with Spin-Transfer-Torque MTJs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nonvolatile Power-Gating FPGA Based on Pseudo-Spin-Transistor Architecture with Spin-Transfer-Torque MTJs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *