Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 0.193 Render date: 2021-12-02T08:18:26.336Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Non-lithographic Nanocolumn Fabrication with Application to Field Emitters

Published online by Cambridge University Press:  17 March 2011

M. J. Colgan
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, CANADA, T6G 2G7
D. Vick
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, CANADA, T6G 2G7
M. J. Brett
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, CANADA, T6G 2G7
Get access

Abstract

A non-lithographic method of fabricating high-density arrays of nanometer-scale vertical columns was investigated. The use of oblique deposition techniques allows the fabrication of isolated vertical columns in a single-step evaporation process without the need for either pre- or post-deposition lithographic processing. Extreme oblique incidence deposition with computer controlled substrate motion was utilized to fabricate columns with diameters near 100 nm and densities exceeding 109 columns/cm2. The desired column geometry may be engineered through choice of deposition angle and substrate spin rate. In one potential application of these microstructures, arrays of vertical columns were fabricated from silicon and carbon and tested for field emission characteristics. Further studies were made on the use of ion milling to modify the tips of the nanocolumns in order to improve the field emission properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhirnov, V. V., Wojak, G. J., Choi, W. B., Cuomo, J. J., and Hren, J. J., J. Vac. Sci. Technol. A. 15, 1733 (1997) and References contained therein.CrossRefGoogle Scholar
2. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S., and Kim, J. M., Appl. Phys. Lett. 75, 3129 (1999).CrossRefGoogle Scholar
3. Lee, Y.-H., Kim, H., Kim, D.-H., and Ju, B.K., J. Electrochem. Soc. 147, 3564 (2000).CrossRefGoogle Scholar
4. Cheah, L. K., Shi, X., Tay, B. K., and Sun, Z., J. Vac. Sci. Technol. B 16, 2049 (1998).CrossRefGoogle Scholar
5. Choi, J. O., Huh, J. W., Choi, Y. H., Kim, M. J., Kim, H., Cho, Y. R., and Jeong, H. S., J. Vac. Sci Technol. B 16, 1199 (1998).CrossRefGoogle Scholar
6. Govyadinov, A. N. and Zakhvitcevich, S. A., J. Vac. Sci. Technol. B 16, 1222 (1998).CrossRefGoogle Scholar
7. Spallas, J. P., Hawryluk, A. M., and Kania, D. R., J. Vac. Sci. Technol. B 13, 1973 (1995).CrossRefGoogle Scholar
8. Driskill-Smith, A. A. G., Hasko, D. G., and Ahmed, H., Appl. Phys. Lett. 71, 3159 (1997).CrossRefGoogle Scholar
9. Yavas, O., Ochiai, C., Takai, M., Hosono, A., and Okuda, S., Appl. Phys. Lett. 76, 3319 (2000).CrossRefGoogle Scholar
10. Baba, A., Hizukuri, M., Iwamoto, M., and Asano, T., J. Vac. Sci Technol. B 18, 877 (2000).CrossRefGoogle Scholar
11. Stepanova, A. N., Givargizov, E. I., Bormatova, L. V., Zhirnov, V. V., Mashkova, E. S., and Molchanov, A. V., J. Vac. Sci. Technol. B 16, 678 (1998).CrossRefGoogle Scholar
12. Sit, J. C., Vick, D., Robbie, K., and Brett, M. J., J. of Mater. Res. 14, 1197 (1999).CrossRefGoogle Scholar
13. Vick, D., Tsui, Y. Y., Brett, M. J., and Fedosejevs, R., Thin Solid Films 350, 49 (1999).CrossRefGoogle Scholar
14. Robbie, K. and Brett, M. J., J. Vac. Sci. Technol. A 15, 1460 (1997).CrossRefGoogle Scholar
15. Robbie, K. and Brett, M. J., U.S. Pat. 5,866,204.Google Scholar
16. Robbie, K., Sit, J. C., and Brett, M. J., J. Vac. Sci. Technol. B 16, 1115 (1998).CrossRefGoogle Scholar
17. Messier, R., Gehrke, T., Frankel, C., Venugopal, V. C., Otano, W., and Lakhtakia, A., J. Vac. Sci. Technol. A 15, 2148 (1997).CrossRefGoogle Scholar
18. Robbie, K., Brett, M. J., and Lakhtakia, A., Nature 384, 616 (1996).CrossRefGoogle Scholar
19. Lakhtakia, A., Messier, R., Brett, M. J., and Robbie, K., Innovat. Mater. Res. 1, 165 (1996).Google Scholar
20. Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T., Brett, M. J., J. Vac. Sci. Technol. A 13, 1032 (1995).CrossRefGoogle Scholar
21. Robbie, K. and Brett, M. J., J. Vac. Sci. Technol. A 15, 1460 (1997).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Non-lithographic Nanocolumn Fabrication with Application to Field Emitters
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Non-lithographic Nanocolumn Fabrication with Application to Field Emitters
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Non-lithographic Nanocolumn Fabrication with Application to Field Emitters
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *