Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-vkbph Total loading time: 0.207 Render date: 2021-05-17T00:47:00.835Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Nonlinearity Found in Thermoelectric Devices Made of Heterogeneous Semiconductor Nanowire Networks

Published online by Cambridge University Press:  25 June 2015

Kate J. Norris
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Matthew P. Garrett
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Junce Zhang
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Elane Coleman
Affiliation:
Structured Materials Industries, Inc., Piscataway, NJ, United States.
Gary S. Tompa
Affiliation:
Structured Materials Industries, Inc., Piscataway, NJ, United States.
Nobuhiko P. Kobayashi
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Get access

Abstract

We present a concept to increase efficiencies utilizing nonlinear elements integrated with our semiconductor nanowire networks. Demonstrated here is power generation with thermoelectric devices made of two nanowire networks, one silicon and one indium phosphide, grown on a mechanically flexible copper substrate. Electron microscopy was utilized to characterize structural integrity of the nanowire networks. Non-linear current-voltage characteristics were observed, which suggests a new platform to increase maximum electrical power generation for a given temperature gradient.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

DiSalvo, F. J. Science (80-. ). 1999, 285, 703706.CrossRef
Zide, J. M. O.; Lu, H.; Onishi, T.; Schroeder, J. L.; Bowers, J. E.; Kobayashi, N. P.; Sands, T. D.; Gossard, A. C.; Shakouri, A. 2010; Vol. 7683, p. 76830V76830V – 9.
Stein, S. S.; Savelli, G.; Faucherand, P.; Montes, L. Nanotechnol. (IEEE-NANO), 2014 IEEE 14th Int. Conf. 2014, 6469.CrossRef
Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Appl. Phys. Lett. 2003, 83.
Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163167.CrossRef
Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.-K.; Goddard, W. a; Heath, J. R. Nature 2008, 451, 168171.CrossRef
Lohn, A. J.; Kobayashi, N. P. Appl. Phys. A 2012, 107, 647651.CrossRef
Loutfy, R. O.; Sharp, J. H. J. Chem. Phys. 1979, 71, 1211.CrossRef
Léonard, F. Phys. Rev. B - Condens. Matter Mater. Phys. 2012, 86, 15.CrossRef
Gossard, a. C., Brown, W, A. C. L. W. W. J. Vac. Sci. Technol. 1982, 20, 694.CrossRef
Norris, K. J.; Zhang, J.; Fryauf, D. M.; Gibson, G. A.; Barcelo, S. J.; Kobayashi, N. P. J. Cryst. Growth 2014, 386, 107112.CrossRef
Norris, K. J.; Garrett, M.; Coleman, E.; Tompa, G. S.; Zhang, J.; Kobayashi, N. P. J. Cryst. Growth 2014, 406, 4147.CrossRef
Yang, R.; Yang, R.; Chen, G.; Chen, G.; Dresselhaus, M. S.; Dresselhaus, M. S. Nano Lett 2005, 5, 11111115.CrossRef
Hu, M.; Giapis, K. P.; Goicochea, J. V.; Zhang, X.; Poulikakos, D. Nano Lett. 2011, 11, 618623.CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nonlinearity Found in Thermoelectric Devices Made of Heterogeneous Semiconductor Nanowire Networks
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nonlinearity Found in Thermoelectric Devices Made of Heterogeneous Semiconductor Nanowire Networks
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nonlinearity Found in Thermoelectric Devices Made of Heterogeneous Semiconductor Nanowire Networks
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *