Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-hjh89 Total loading time: 0.196 Render date: 2021-09-23T12:28:10.185Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Ni-Silicided Deep Source/Drain Junctions Formed by Solid Phase Epitaxial Regrowth

Published online by Cambridge University Press:  17 March 2011

Anne Lauwers
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Richard Lindsay
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Kirklen Henson
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Simone Severi
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Amal Akheyar
Affiliation:
Affiliate researcher at IMEC from Infineon
Bartek J. Pawlak
Affiliation:
Philips Research Leuven
Muriel de Potter
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Karen Maex
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Get access

Abstract

Making use of SPER (Solid Phase Epitaxial Regrowth) As and B deep source/drain junctions with high activation can be obtained at temperatures below 700°C. However, higher thermal budget is required to regrow and activate the dopants in the poly gates. Low junction leakage and low contact resistance can be obtained for Ni-silicided As and B SPER junctions making use of deep As and B implants. Because of the low thermal budget source/drain junctions obtained by SPER are an attractive alternative to conventional spike annealed junctions for technologies making use of metal gates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chui, C.O., Ramanathan, S., Triplett, B.B., McIntyre, P.C. and Saraswat, K.C., IEEE Electron Dev Lett. 23, 473 (2002).CrossRefGoogle Scholar
2. Ashburn, S.P., Ozturk, M.C., Wortman, J.J., Harris, G., Honeycutt, J. and Maher, D.M., J. Electron. Mater. 21, 81 (1992).CrossRefGoogle Scholar
3. Li, J., Hong, Q.Z., Mayer, J.W. and Rathbun, L., Appl. Phys. Lett. 67, 2506 (1990).Google Scholar
4. Wittmer, M., Nicolet, M.A. and Mayer, J.W., Thin Solid Films, 42, 51 (1977).CrossRefGoogle Scholar
5. Hsieh, Y.F., Chen, L.J., Marshall, E.D. and Lau, S.S., Thin Solid Films, 162, 287 (1988).CrossRefGoogle Scholar
6. Patterson, J.K., Park, B.J., Ritley, K., Xiao, H.Z., Allen, L.H. and Rockett, A., Thin Solid Films, 253, 456 (1994).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ni-Silicided Deep Source/Drain Junctions Formed by Solid Phase Epitaxial Regrowth
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ni-Silicided Deep Source/Drain Junctions Formed by Solid Phase Epitaxial Regrowth
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ni-Silicided Deep Source/Drain Junctions Formed by Solid Phase Epitaxial Regrowth
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *