Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-tkzrn Total loading time: 0.293 Render date: 2021-06-24T22:56:23.080Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

New Tools to Control Morphology of Self-Organized Quantum Dot Nanostructures

Published online by Cambridge University Press:  10 February 2011

V.A. Shchukina
Affiliation:
Technische Universität Berlin, 10623 Berlin, Germany A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia
N.N. Ledentsova
Affiliation:
Technische Universität Berlin, 10623 Berlin, Germany A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia
V.M. Ustinov
Affiliation:
A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia
Yu.G. Musikhin
Affiliation:
A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia
V.B. Volovik
Affiliation:
A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia
A. Schliwa
Affiliation:
Technische Universität Berlin, 10623 Berlin, Germany
O. Stier
Affiliation:
Technische Universität Berlin, 10623 Berlin, Germany
R. Heitz
Affiliation:
Technische Universität Berlin, 10623 Berlin, Germany
D. Bimberg
Affiliation:
Technische Universität Berlin, 10623 Berlin, Germany
Get access

Abstract

We consider several approaches to control morphology of self-organized quantum dot (QD) nanostructures. (i) We study effects of temperature and of temperature ramping on formation of QD arrays. The theory of equilibrium distribution of island volumes is developed predicting an entropy-driven decrease of island volume at higher temperatures. Experiments on InAs/GaAs(001) obtained both at submonolayer deposition and in Stranski-Krastanow (SK) growth mode reveal the decrease of island volume with temperature increase that agrees with the thermodynamic picture of island formation. (ii) We show a reversibility of temperature-driven changes in island volume, shape, and density for SK InAs/GaAs(001) islands and a new possibility to control QDs. (iii) We consider an advanced way of formation of complex QD structures. For multisheet arrays of strained islands a transition between correlation and anticorrelation driven by the spacer thickness is predicted theoretically and confirmed experimentally. (iv) The overgrowth of InAs/GaAs islands by an InGa(Al)As alloy leads to alloy phase separation in the capping layer and an effective increase of both the lateral size and the height of the QDs. These complex growth approaches enable us to tune efficiently electronic spectra of the QD systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Bimberg, D., Grundmann, M., and Ledentsov, N.N., Quantum Dot Heterostructures, Wiley, Chichester (1998).Google Scholar
2 Shchukin, V.A. and Bimberg, D., Rev. Mod. Phys. 71, pp. 11251171 (1999).CrossRefGoogle Scholar
3 Lifshits, I.M., and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
4 Andreev, A.F., JETP Lett. 32, pp. 640642 (1980).Google Scholar
5 Marchenko, V.I., JETP Lett. 33, pp. 381382 (1981).Google Scholar
6 Vanderbilt, D., Surf. Sci. 268, pp. L300–L304 (1992).CrossRefGoogle Scholar
7 Kern, K., Niehus, H., Schatz, A., Zeppenfeld, P., George, J., and Comsa, G., Phys. Rev. Lett. 67, pp. 855858 (1991).CrossRefGoogle Scholar
8 Bressler-Hill, V., Lorke, A., Varma, S., Pond, K., Petroff, P.M., and Weinberg, W.H., Phys. Rev. B 50, pp. 84798488 (1994).CrossRefGoogle Scholar
9 Ledentsov, N.N., Krestnikov, I.L., Maximov, M.V., Ivanov, S.V., Sorokin, S.L., Kop'ev, P.S., Alferov, Zh.I., Bimberg, D., and Torres, C.M. Sotomayor, Appl. Phys. Lett. 70, pp. 27662767 (1997).CrossRefGoogle Scholar
10 Straßburg, M., Kutze, V., Pohl, U.W., Hoffmann, A., Broser, I., Ledentsov, N.N., Bimberg, D., Rose-nauer, A., Fisher, U., Gerthsen, D., Krestnikov, I.L., Maximov, M.V., Kop'ev, P.S., and Alferov, Zh.I., Appl. Phys. Lett. 72, pp. 942944 (1998).CrossRefGoogle Scholar
11 Wang, L.G., Kratzer, P., Scheffler, M., and Moll, N., Phys. Rev. Lett. 82, pp. 40424045 (1999).CrossRefGoogle Scholar
12 Bartelt, M.C. and Evans, J.W., Phys. Rev. B 46, pp. 1267512687 (1992).CrossRefGoogle Scholar
13 Shchukin, V.A., Ledentsov, N.N., and Bimberg, D.. In: Self-Organized Processes in Semiconductor Alloys — Spontaneous Ordering, Composition Modulation, and 3–D Islanding. Ed. by Follstaedt, D.M., Joyce, B.A., Mascarenhas, A., and Suzuki, T.. Mat. Res. Soc. Symp. Proc. V. 583. Pittsburgh, USA, 2000.Google Scholar
14 Gerthsen, D. et al. , unpublished.Google Scholar
15 Shchukin, V.A., Ledentsov, N.N., Kop'ev, P.S., and Bimberg, D., Phys. Rev. Lett. 75, pp. 29682971 (1995).CrossRefGoogle Scholar
16 Lee, S., Daruka, I., Kim, C.S., Barabàsi, A.-L., Merz, J.L., and Furdyna, J.K.. Phys. Rev. Lett. 81, pp. 34793482 (1998).CrossRefGoogle Scholar
17 Madhukar, A., Chen, P., Xie, Q., Konkar, A., Ramachandran, T.R., Kobayashi, N.P., and Viswanathan, R., in Low Dimensional Structures prepared by Epitaxial Growth or Regrowth on Patterned Substrates, Proc. NATO Advanced Workshop, February 20-24, 1995, Ringberg Castle, Germany, edited by Eberl, K., Petroff, P., and Demeester, P., Kluwer, Dordrecht, pp. 1928 (1995); N. Kobayashi, T.R. Ramachandran, P. Chen, and A. Madhukar, Appl. Phys. Lett. 68, pp. 3299-3301 (1996).CrossRefGoogle Scholar
18 Jesson, D.E., Chen, K.M., and Pennycook, S.J., MRS Bulletin 21, p. 31 (1996); D.E. Jesson, G. Chen, K.M. Chen, and S.J. Pennycook, Phys. Rev. Lett. 80, pp. 5156-5159 (1998).CrossRefGoogle Scholar
19 Ledentsov, N.N., Grundmann, M., Kirstaedter, N., Schmidt, O., Heitz, R., Böhrer, J., Bimberg, D., Ustinov, V.M., Shchukin, V.A., Kop'ev, P.S., Alferov, Zh.I., Ruvimov, S.S., Kosogov, A.O., Werner, P., Richter, U., Gösele, U., and Heydenreich, J.. Solid State Electron. 40, pp. 785798 (1996).CrossRefGoogle Scholar
20 Musikhin, Yu.G. et al. , to be published.Google Scholar
21 Stier, O., Grundmann, M., and Bimberg, D.. Phys. Rev. B 59, pp. 56885701 (1999).CrossRefGoogle Scholar
22 Pehlke, E., Moll, N., and Scheffler, M., 1996, Proceedings of the 23rd International Conference on Physics of Semiconductors, Berlin, Germany, July 22-27, 1996, edited by Scheffler, M. and Zimmermann, R. (World Scientific, Singapore), Vol. 2, pp. 13011304 (1996).Google Scholar
23 Kaminski, A.Yu., and Suris, R.A., 1996, Proceedings of the 23rd International Conference on Physics of Semiconductors, Berlin, Germany, July 22-27, 1996, edited by Scheffler, M. and Zimmermann, R. (World Scientific, Singapore), Vol. 2 pp. 13371340.Google Scholar
24 Muraki, K., Fukatsu, S., Shiraki, Y., and Ito, R.. Appl. Phys. Lett. 61, pp. 557559 (1992).CrossRefGoogle Scholar
25 Woggon, U., Langbein, W., Hvam, J.M., Rosenauer, A., Remmele, T., and Gerthsen, D., Appl. Phys. Lett. 71, pp. 377379 (1997).CrossRefGoogle Scholar
26 Rosenauer, A., Oberst, W., Litvinov, D., Gerthsen, D., Förster, A., and Schmidt, R., Phys. Rev. B 61, pp. 82768288 (2000).CrossRefGoogle Scholar
27 Xie, Q., Chen, P., Ramachandran, T.R., Nayfonov, A., Koknar, A., and Madhukar, A., J. Cryst. Growth 150, pp. 357363 (1995).CrossRefGoogle Scholar
28 Goldstein, L., Glas, F., Marzin, J.Y., Chaxasse, M.N., and Roux, G. Le, Appl. Phys. Lett. 47, pp. 10991102 (1985).CrossRefGoogle Scholar
29 Ledentsov, N.N., Shchukin, V.A., Grundmann, M., Kirstaedter, N., Böhrer, J., Schmidt, O., Bimberg, D., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., Zaitsev, S.V., Gordeev, N.Yu., Alferov, Zh.I., Borovkov, A.I., Kosogov, A.O., Ruvimov, S.S., Werner, P., Gösele, U., and Heydenreich, J., Phys. Rev. B 54, pp. 87438750 (1996).CrossRefGoogle Scholar
30 Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N., Phys. Rev. Lett. 75, pp. 25422545 (1995).CrossRefGoogle Scholar
31 Tersoff, J., Teichert, C., and Lagally, M.G., Phys. Rev. Lett. 76, pp. 16751678 (1996).CrossRefGoogle Scholar
32 Shchukin, V.A., Bimberg, D., Malyshkin, V.G., and Ledentsov, N.N., Phys. Rev. B 57, pp. 1226212274 (1998).CrossRefGoogle Scholar
33 Krestnikov, I.L., Kop'ev, P.S., Alferov, Zh.I., Straßburg, M., Ledentsov, N.N., Hoffmann, A., Bimberg, D., Rosenauer, A., Fischer, U., Gerthsen, D., and Torres, C.M. Sotomayor, Phys. Rev. B 59, pp. 86958703 (1999).CrossRefGoogle Scholar
34 Holy, V., Springholz, G., Pinczolits, M., and Bauer, G., Phys. Rev. Lett. 83, pp. 356359 (1999).CrossRefGoogle Scholar
35 Li, H., Wu, J., Wang, Zh., and Daniels-Race, T., Appl. Phys. Lett. 75, pp. 11731175 (1999).CrossRefGoogle Scholar
36 Liu, N., Shih, Ch.-K., and Baldenov, O., Abstract: s of the Fall-99 MRS Meeting, p. 167.Google Scholar
37 Xie, Q., Chen, P., and Madhukar, A., Appl. Phys. Lett. 65, pp. 20512053 (1994).CrossRefGoogle Scholar
38 Maximov, M.V. et al. , to be published.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New Tools to Control Morphology of Self-Organized Quantum Dot Nanostructures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

New Tools to Control Morphology of Self-Organized Quantum Dot Nanostructures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

New Tools to Control Morphology of Self-Organized Quantum Dot Nanostructures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *