Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-6rw4p Total loading time: 0.146 Render date: 2021-05-15T17:23:20.057Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Nanostructures in Uranium Oxocompounds

Published online by Cambridge University Press:  26 February 2011

Sergey V. Krivovichev
Affiliation:
skrivovi@mail.ru, St.Petersburg State University, Crystallography, University Emb. 7/9, St.Petersburg, N/A, 199034, Russian Federation, 7(812)3289647, 7(812)3284418
Ivan G. Tananaev
Affiliation:
geokhi@mail.ru, Instute of Physical Chemistry RAS, Russian Federation
Boris F Myasoedov
Affiliation:
bmyas@pran.ru, Institute of Physical Chemistry RAS, Russian Federation
Corresponding
Get access

Abstract

Examples of uranium-oxide-based nanostructures are considered, including 2D organic-inorganic nanocomposites and nanotubules. In nanocomposites, interfacial interactions between organic and inorganic substructures can be studied by charge-density matching principle. Application of this principle to uranyl compounds requires special attention since surface area of uranyl-based 2D units is higher than that of other inorganic oxysalts units (i.e. metal phosphates). The charge-density matching principle is, however, observed either through tail interdigitation (for long-chain monoamines) or incorporation of acid-water interlayers into organic substructure (for long-chain diamines). In some compounds, protonated amine molecules form cylindrical micelles that involves self-assembly governed by competing hydrophobic/hydrophillic interactions. The flexible inorganic complexes present in the reaction mixture could then form around cylindrical micelles to produce highly undulated 2D sheets or nanotubules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Rao, C.N.R. and Cheetham, A.K., J. Mater. Chem. 11, 2887 (2001).CrossRefGoogle Scholar
2. Rao, C.N.R. and Govindaraj, A., Nanotubes and Nanowires (RSC Publishing, Cambridge, 2005).Google Scholar
3. Burns, P. C., Kubatko, K.-A. Hughes, Sigmon, G., Fryer, B. J., Gagnon, J. E., Antonio, M. R., Soderholm, L., Angew. Chem. Int. Ed. 44, 2135 (2005).10.1002/anie.200462445CrossRefGoogle Scholar
4. Krivovichev, S. V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I. G. and Myasoedov, B. F., Angew. Chem. Int. Ed. 44, 1134 (2005).10.1002/anie.200462356CrossRefGoogle Scholar
5. Krivovichev, S. V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I. G. and Myasoedov, B. F., J. Amer. Chem. Soc. 127, 1072 (2005).10.1021/ja0436289CrossRefGoogle Scholar
6. Albrecht-Schmitt, Th., Angew. Chem. Int. Ed. 44, 4836 (2005).10.1002/anie.200500936CrossRefGoogle Scholar
7. Burns, P. C., Miller, M. L. and Ewing, R. C., Can. Mineral. 34, 845 (1996).Google Scholar
8. Burns, P. C., Ewing, R. C. and Hawthorne, F. C., Can. Mineral. 35, 1551 (1997).Google Scholar
9. Krivovichev, S. V. and Kahlenberg, V., Z. Naturforsch. 62b, 538 (2005).10.1515/znb-2005-0510CrossRefGoogle Scholar
10. Krivovichev, S. V. and Kahlenberg, V., J. Alloys Compds 389, 55 (2005).10.1016/j.jallcom.2004.08.019CrossRefGoogle Scholar
11. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 630, 2736 (2004).CrossRefGoogle Scholar
12. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 739 (2005).CrossRefGoogle Scholar
13. Krivovichev, S. V. and Kahlenberg, V., Radiochemistry 47, 412 (2005).Google Scholar
14. Krivovichev, S. V. and Kahlenberg, V., Radiochemistry 47, 415 (2005).Google Scholar
15. Krivovichev, S. V. and Kahlenberg, V., J. Alloys Compds 395, 41 (2005).CrossRefGoogle Scholar
16. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 2352 (2005).10.1002/zaac.200400505CrossRefGoogle Scholar
17. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 2358 (2005).CrossRefGoogle Scholar
18. Krivovichev, S. V., Kahlenberg, V., Kaindl, R. and Mersdorf, E., Eur. J. Inorg. Chem. 2005, 16531656.Google Scholar
19. Krivovichev, S. V., Tananaev, I. G., Kahlenberg, V. and Myasoedov, B. F., Dokl. Phys. Chem. 403, 124 (2005).CrossRefGoogle Scholar
20. Blatov, V. A., Serezhkina, L. B., Serezhkin, V. N. and Trunov, V. K., Koord. Khim. 14, 1705 (1988).Google Scholar
21. Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouz, A., Janicke, M. and Chmelka, B. F., Science 261, 1299 (1993).10.1126/science.261.5126.1299CrossRefGoogle Scholar
22. Maggard, P. A. and Boyle, P. D., Inorg. Chem. 42, 4250 (2003).10.1021/ic0342649CrossRefGoogle Scholar
23. Haskouri, J.E., Roca, M., Cabrera, S., Alamo, J., Beltrán-Porter, A., Beltrán-Porter, D., Marcos, M. Dolores, and Amorós, P., Chem. Mater. 11, 1446 (1999).CrossRefGoogle Scholar
24. Feng, P., Bu, X., and Stucky, G. D., Inorg. Chem. 39, 2 (2000).10.1021/ic991026yCrossRefGoogle Scholar
25. Tolbert, S. H., Landry, C. C., Stucky, G. D., Chmelka, B. F., Norby, P., Hanson, J. C. and Monnier, A., Chem. Mater. 13, 2247 (2001).CrossRefGoogle Scholar
26. Sassoye, C., Loiseau, T., and Férey, G., J. Fluor. Chem. 107, 187 (2001).10.1016/S0022-1139(00)00357-2CrossRefGoogle Scholar
27. Krivovichev, S. V. and Burns, P. C., J. Solid State Chem. 170, 106 (2003).10.1016/S0022-4596(02)00033-6CrossRefGoogle Scholar
28. Krivovichev, S. V., Crystallogr. Rev. 10, 185 (2004).CrossRefGoogle Scholar
29. Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
30. Patzke, G. R., Krumeich, F., and Nesper, R., R. Angew. Chem. Int. Ed. 41, 2446 (2002).10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K3.0.CO;2-K>CrossRef3.0.CO;2-K>Google Scholar
31. Krush-Elbaum, L., Newns, D. M., Zeng, H., Derycke, V., Sun, J. Z., and Sandstrom, R., Nature 431, 672 (2004).CrossRefGoogle Scholar
32. Krivovichev, S. V., Yakovenchuk, V. N., Armbruster, T., Döbelin, N., Pattison, P., Weber, H.-P. and Depmeier, W., Amer. Mineral. 89, 1561 (2004).CrossRefGoogle Scholar
33. Krivovichev, S. V. and Burns, P. C., Radiochem. 46, 408 (2004).Google Scholar
34. Krivovichev, S. V. and Burns, P. C., Z. Kristallogr. 218, 683 (2003).Google Scholar
35. Krivovichev, S. V. and Burns, P. C., Z. Kristallogr. 218, 725 (2003).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanostructures in Uranium Oxocompounds
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanostructures in Uranium Oxocompounds
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanostructures in Uranium Oxocompounds
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *