Hostname: page-component-594f858ff7-r29tb Total loading time: 0 Render date: 2023-06-06T12:13:32.226Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Nanoscale Indentation of Polymer and Composite Particles by Atomic Force Microscopy

Published online by Cambridge University Press:  01 February 2011

Silvia Armini
Affiliation:
armini@imec.be, IMEC/KULeuven, SPDT/AMPS/CMP, Kapeldreef, 75, Leuven, Belgium, 3001, Belgium, 0032-16-288617, 0032-16-281576
Ivan U. Vakarelski
Affiliation:
vakarelski@cheme.kyoto-u.ac.jp, Kyoto University-Katsura, Kyoto, 615-8510, Japan
Caroline M. Whelan
Affiliation:
whelan@imec.be, IMEC, SPDT/NANO, Leuven, 3001, Belgium
Karen Maex
Affiliation:
maex@imec.be, KU Leuven, Leuven, 3001, Belgium
Ko Higashitani
Affiliation:
Ko Higashitani [k_higa@cheme.kyoto-u.ac.jp], Kyoto University-Katsura, Kyoto, 615-8510, Japan
Get access

Abstract

Atomic Force Microscopy (AFM) was employed to probe the mechanical properties of surface-charged polymethylmethacrylate (PMMA)-based terpolymer and a composite terpolymer core-silica shell nanosphere in air and water media. Since these materials exhibit enhanced mechanical properties, such as toughness and elasticity, and enhanced chemical stability, they are particularly interesting for potential applications in reducing defectivity during the process of Chemical Mechanical Planarization. The polymer particles were subjected to a thermal treatment aimed at improving their mechanical properties in terms of hardness (H) and elastic modulus (E). By analysis of force-displacement curves and on the basis of Hertz's theory of contact mechanics, Young's moduli were measured for the terpolymer compared with the composite that has expected mechanical property enhancement due to its silica shell. In air, E increases from 4.3 GPa to 6.6 GPa for the treated terpolymer compared with the respective value of 10.3 GPa measured for the composite. In water, E increases from 1.6 GPa to 4.5 GPa for the thermally treated terpolymer that is comparable with the respective value of 3.6 GPa measured for the composite. This observation suggests that as an alternative to the creation of polymer-silica composite nanoparticles for CMP, comparable mechanical properties can be achieved by a simple heat treatment step.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Steigerwald, J. M.; “A fundamental study of chemical-mechanical polishing of copper thin films” PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, USA (1995).Google Scholar
2 Ramarajan, S.; Hariharaputhiran, M.; Her, Y. S.; Babu, S. V. Surface Engineering, 15, 4, 324 (1999).CrossRefGoogle Scholar
3 Vanlandingham, M. R.; McKnight, S. H.; Palmese, G. R.; Ellings, J. R.; Huang, X.; Bogetti, T. A.; Eduljee, R. F.; Gillespie, J. W. J. Adhesion, 64 31 (1997).CrossRefGoogle Scholar
4 Chizhik, S. A.; Huang, Z.; Gorbunov, V. V.; Myshkin, N. K.; Tsukruk, V. V. Langmuir, 14 2606 (1998).CrossRefGoogle Scholar
5 Vakarelski, I. U.; Toritani, A.; Nakayama, M.; Higashitani, K. Langmuir 19 110 (2003).CrossRefGoogle Scholar
6 Armini, S.; Whelan, C. M.; Smet, M.; Eslava, S.; Maex, K. submitted to Polymer.Google Scholar
7 Ananthapadmanabhan, K. P.; Mao, G. Z.; Goddard, E. D.; Tirrell, M. Colloids and Surfaces, 61 167 (1991).CrossRefGoogle Scholar
8 Cleveland, J. P.; Manne, S.; Bocker, D.; Hansma, P. K. Rev. Sci. Instrum. 64 1 (1993).CrossRefGoogle Scholar
9 Ducker, W. A.; Senden, T. J.; Pasheley, R. M. Langmuir, 8 1831 (1992).CrossRefGoogle Scholar
10 Vakarelski, I. U.; Toritani, A.; Nakayama, M.; Higashitani, K. Langmuir, 17 4739 (2001).CrossRefGoogle Scholar
11 Touhami, A.; Nysten, B.; Dufrêne, Y. F. Langmuir, 19 4539 (2003).CrossRefGoogle Scholar
12 Tan, S.; Sherman, R. L.; Ford, W. T. Langmuir, 20 7015 (2004).CrossRefGoogle Scholar
13 Hertz, H. J.; Reine Angew. Math. 92 156 (1882).Google Scholar
14 Sneddon, I. N. Int. J. Eng. Sci. 3 47 (1965).CrossRefGoogle Scholar
15 Johnson, K. L. Contact Mechanics, Cambridge University Press, Cambridge (1985).CrossRefGoogle Scholar
16 Maugis, D.; Pollock, H. M.; Acta metal. 32 1323 (1984).CrossRefGoogle Scholar
17 Biggs, S.; Spinks, G. J. Adhesion Sci. Technol. 12, 5 461 (1998).CrossRefGoogle Scholar
18 Yaralioglu, G. G.; Degertekin, F. L.; Crozier, K. B.; Quate, C. F. J. Appl. Phys. 87 7491 (2000).CrossRefGoogle Scholar
19 Kracke, B.; Damaschke, B. Appl. Phys Lett., 77 361 (2000).CrossRefGoogle Scholar
20 Jiang, W.; Yang, W.; Zeng, X.; Fu, S. Journal of Polymer Science: Part A: Polymer Chemistry, 42 733 (2004).CrossRefGoogle Scholar
21 Briscoe, B. J.; Fiori, L.; Pelillo, E. J. Phys. D: Appl. Phys., 31 2395 (1998).CrossRefGoogle Scholar