Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-wsxd2 Total loading time: 0.598 Render date: 2023-02-04T13:29:46.246Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Nanoscale Heat Transport through Epitaxial Ultrathin Hetero Films: Bi(111)/Si(001) and Bi(111)/Si(111)

Published online by Cambridge University Press:  06 March 2012

Anja Hanisch-Blicharski
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Simone Wall
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Annika Kalus
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Tim Frigge
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Michael Horn- von Hoegen
Affiliation:
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
Get access

Abstract

The cooling process of ultrathin hetero films upon excitation with short laser pulses was studied for epitaxial Bi(111) films on Si(001) and Si(111) substrates by means of the Debye-Waller effect with ultrafast electron diffraction. From the exponential decay of the temperature, a cooling time constant was determined as a function of thickness for both substrates. For Bi/Si(111), a linear dependence between the decay constant and thickness was observed, even for 2.8 nm thin films , as predicted from the diffuse mismatch model (DMM) and the acoustic mismatch model (AMM). However, with Bi/Si(001), a significant deviation from this linear dependence was observed for film thicknesses below 5 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R. and Phillpot, S. R., J. Appl. Phys., 93, 793 (2003).CrossRefGoogle Scholar
2. Swartz, E. T. and Pohl, R. O., Rev. Mod. Phys., 61, 605 (1989).CrossRefGoogle Scholar
3. Stoner, R. J. and Maris, H. J., Phys. Rev. B, 48, 16373 (1993).CrossRefGoogle Scholar
4. Krenzer, B., Hanisch, A., Duvenbeck, A., Rethfeld, B. and Horn- von Hoegen, M., J. Nanomaterials, ID 590609 (2008).Google Scholar
5. Krenzer, B., Janzen, A., Zhou, P., von der Linde, D. and Horn-von Hoegen, M., New J. Phys., 8, 190 (2006).CrossRefGoogle Scholar
6. Kury, P., Hild, R., Thien, D., Günter, H.-L., Meyer zu Heringdorf, F.-J. and Horn von Hoegen, M., Rev. Sci. Instrum., 76, 083906 (2005).CrossRefGoogle Scholar
7. Nagao, T., Sadowski, J. T., Saito, M., Yaginuma, S., Fujikawa, Y., Kogure, T., Ohno, T., Hasegawa, Y., Hasegawa, S. and Sakurai, T., Phys. Rev. Lett. 93, 105501 (2004).CrossRefGoogle Scholar
8. Jnawali, G., Hattab, H., Krenzer, B. and Horn- von Hoegen, M., Phys. Rev. B, 74, 195340 (2006).CrossRefGoogle Scholar
9. Janzen, A., Krenzer, B., Zhou, P., von der Linde, D. and Horn-von Hoegen, M., Surf. Sci., 600, 4094 (2006).CrossRefGoogle Scholar
10. Yaginuma, S., Nagao, T., Sadowski, J. T., Pucci, A. and Sakurai, T., Surf. Sci. 547, L877 (2003).CrossRefGoogle Scholar
11. Kammler, M. and Horn-von Hoegen, M., Surf. Sci., 576, 56 (2005).CrossRefGoogle Scholar
12. Hanisch, A., Krenzer, B., Pelka, T., Möllenbeck, S. and Horn- von Hoegen, M., Phys. Rev. B, 77, 125410 (2008).CrossRefGoogle Scholar
13. Murphy, E. A., Elsayed-Ali, H. E. and Herman, J. W., Phys. Rev. B, 48, 4921 (1993).CrossRefGoogle Scholar
14. Janzen, A., Krenzer, B., Heinz, O., Zhou, P., Thien, D., Hanisch, A., Meyer zu Heringdorf, F.-J., von der Linde, D. and Horn- von Hoegen, M., Rev. Sci. Instrum., 78, 013906 (2007).CrossRefGoogle Scholar
15. Elsayed-Ali, H. E. and Herman, J. W., Appl. Phys. Lett., 57, 1508 (1990).CrossRefGoogle Scholar
16. Bannani, A., Bobisch, C. A., and Möller, R., Appl. Phys. Lett., 93, 032111 (2008).CrossRefGoogle Scholar
17. Miklowittz, J., The Theory of Elastic Waves and Waveguides , North Holland, Amsterdam, 1978 Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoscale Heat Transport through Epitaxial Ultrathin Hetero Films: Bi(111)/Si(001) and Bi(111)/Si(111)
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Nanoscale Heat Transport through Epitaxial Ultrathin Hetero Films: Bi(111)/Si(001) and Bi(111)/Si(111)
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Nanoscale Heat Transport through Epitaxial Ultrathin Hetero Films: Bi(111)/Si(001) and Bi(111)/Si(111)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *