Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-h9sqt Total loading time: 0.24 Render date: 2022-01-19T13:41:07.655Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Nanoindentation probing of high-aspect ratio pillar structures on optical multilayer dielectric diffraction gratings

Published online by Cambridge University Press:  02 August 2012

K. Mehrotra*
Affiliation:
Department of Mechanical Engineering Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627
H.P. Howard
Affiliation:
Materials Science Program and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627
S.D. Jacobs
Affiliation:
Materials Science Program and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627
J.C. Lambropoulos
Affiliation:
Department of Mechanical Engineering Materials Science Program and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627
*
a Electronic mail: mehrotra@me.rochester.edu
Get access

Abstract

We measure the mechanical response of optical multilayer dielectric (MLD) diffraction gratings, geometries which are constrained in only one transverse direction but free in the other, using nanoindentation. The results are explained using a stress-strain model, which reveals a uniaxial yield stress of 4.1- 4.6 GPa and predicts a similar dependence of yield stress on loads for both fully-elastic and fully-plastic solutions. Following R. Hill’s model of an expanding cavity under internal pressure, we show that the indentation response of the high-aspect ratio “pillar” geometry can be expressed in terms of uniaxial yield stress rather than material hardness.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strickland, D., et al. ., “Compression of amplified chirped optical pulses”, Optics Comm. 56, 219 (1985).10.1016/0030-4018(85)90120-8CrossRefGoogle Scholar
2. Oliver, J. B., et al. ., “Thin-film design for multilayer diffraction gratings”, Proc. of SPIE 5991, 5911 A (2005).Google Scholar
3. Schattenburg, M.L., et al. ., “Advanced interference lithography for nanomanufacturing”, International Society for Nanomanufacturing (ISNM) (2006).Google Scholar
4. Smith, D.J., et al. ., “Large area pulse compression gratings fabricated onto fused silica using scanning beam interference lithography”, ICUIL (2008).Google Scholar
5. Ashe, B., et al. ., “Optimizing a cleaning process for multilayer-dielectric (MLD) diffraction gratings”, LLE Review 112, 228 (2007).Google Scholar
6. Mehrotra, K., et al. ., “Nanoindentation of high-aspect ratio pillar structures on optical multilayer dielectric diffraction gratings”, AIP Advances 1, 042179 (2011).10.1063/1.3673070CrossRefGoogle Scholar
7. Oliver, W.C., Pharr, G.M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res. 7, 1564 (1992).10.1557/JMR.1992.1564CrossRefGoogle Scholar
8. Greer, J.R., “Size dependence on strength of gold at the micron scale in the absence of strain gradients”, Ph.D. Dissertation, Stanford University (2005).10.1016/j.actamat.2004.12.031CrossRefGoogle Scholar
9. Greer, J.R., et al. ., “Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients”, Acta Mater. 53, 1821 (2005).10.1016/j.actamat.2004.12.031CrossRefGoogle Scholar
10. Bei, H., et al. ., “Strength differences arising from homogeneous versus heterogeneous dislocation nucleation”, Phys. Rev. B 77, 060103R (2008).10.1103/PhysRevB.77.060103CrossRefGoogle Scholar
11. Peter, D., et al. ., “Collapse mechanisms for high aspect ratio structures with application to clean processing”, ECS Transactions 25, 241 (2009).10.1149/1.3202659CrossRefGoogle Scholar
12. Hill, R., The mathematical theory of plasticity (Oxford Univ. Press, 1950), pp. 97105 Google Scholar
13. Lambropoulos, J. C., et al. ., “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 44484462 (1996).10.1364/AO.35.004448CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanoindentation probing of high-aspect ratio pillar structures on optical multilayer dielectric diffraction gratings
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanoindentation probing of high-aspect ratio pillar structures on optical multilayer dielectric diffraction gratings
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanoindentation probing of high-aspect ratio pillar structures on optical multilayer dielectric diffraction gratings
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *