Article contents
Nanoengineering with DNA
Published online by Cambridge University Press: 15 February 2011
Abstract
DNA is a tractable medium for controlling the structure of matter on the nanometer scale. We have explored ligating together stable branched DNA molecules to form geometrical objects. By this means, we have assembled a 3-connected molecule whose helix axes have the connectivity of a cube. The construct is a hexacatenane, each of whose cyclic strands corresponds to a face of the object. Each of its twelve edges contains a unique recognition site for cleavage by a restriction enzyme; these sites are used to demonstrate the assembly of the object. The plectonemic structure of DNA also permits the directed synthesis of molecular knots. Recently, we have constructed trefoil knots from B-DNA and an amphichiral figure-8 knot whose helical domains contain both B-DNA and Z-DNA.
We have developed a solid-support methodology for the synthesis of geometrical objects. This approach provides greater control over products and topological purity, and lends itself better to automation. Branched molecules containing 3–6 double helical arms can be formed from equimolar mixtures of their component strands, thereby enabling the construction of 3–6 connected networks. The goals of this work include the construction of periodic multiply-connected networks of DNA. The aims of these DNA constructions include using them as scaffolding to build periodic macromolecular arrays for diffraction purposes, as well as directing the assembly of molecular electronic devices. There are wellcharacterized molecular transformations of DNA that make nano-scale machines feasible to build in this molecular context. These materials are likely to be useful for understanding crystallization processes and structure-function relationships.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
- 4
- Cited by