Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T21:35:42.445Z Has data issue: false hasContentIssue false

Nanocomposite of Bi2Te3 with Metal Inclusions for Advanced Thermoelectric Applications

Published online by Cambridge University Press:  31 January 2011

Sumithra Santhanam
Affiliation:
ssanthan@uno.edu, University of New Orleans, Advanced Materials Research Institute, New Orleans, Louisiana, United States
Nathan J. Takas
Affiliation:
ntakas@uno.edu, University of New Orleans, Advanced Materials Research Institute, 2000 Lakeshore Dr., New Orleans, Louisiana, 70148, United States, 1(504)280-5629, 1(504)280-3185
Dinesh Misra
Affiliation:
dmisra@uno.edudakkmisra@gmail.com, UNO, AMRI, SC2046B, AMRI, UNO, 2000 Lakeshore Drive, New Orleans, Louisiana, 70148, United States, 5047566703
Pierre F. P. Poudeu
Affiliation:
ppoudeup@uno.edu, University of New Orleans, Chemistry, 2000 Lakeshore Dr, SC2005, New Orleans, Louisiana, 70148, United States, (504)2801057, (504)2803185
Kevin L. Stokes
Affiliation:
klstokes@uno.edu, University of New Orleans, Physics, New Orleans, Louisiana, United States
Get access

Abstract

Recent experimental and theoretical studies have shown that the thermal to electrical power conversion efficiency (as measured by the thermoelectric figure of merit) can be enhanced in nanocomposite materials. Primarily, these efforts to improve the thermoelectric efficiency rely on reducing the lattice thermal conductivity through nanostructuring of the materials or the introduction of a second nanometer-scale phase into the composite material. Here, we show that the inclusion of semimetal nanoparticles into bismuth telluride (Bi2Te3) can result in both an increase in the electronic transport properties (so called "power factor") as well as a decrease in lattice thermal conductivity. The effect of different volume fractions of Bi nanoinclusions (3% and 5%) on the thermal and electrical properties of the composite are reported. A marginal increase in the thermoelectric figure of merit is achieved for 3% metal nanoinclusion, whereas a significant improvement in the figure of merit could be achieved for 5% nanoinclusions in the Bi2Te3 thermoelectric matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Goldsmid, H. J. Electronic Refrigeration (Pion Ltd., London, 1986).Google Scholar
2 Poudel, B. Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D., Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science 320, 634 (2008).Google Scholar
3 Faleev, S. V. and Leonard, F. Phys. Rev. B 77, 214304 (2008).Google Scholar
4 Heremans, J. P. Thrush, C. M. and Morelli, D. T. J. Appl. Phys. 98, 063703 (2005).Google Scholar
5 Zebarjadi, M. Esfarjani, K. Shakouri, A. Bahk, J.-H. Bian, Z. Zeng, G. Bowers, J. Lu, H. Zide, J. and Gossard, A. Appl. Phys. Lett. 94, 202105 (2009).Google Scholar
6 Zebarjadi, M. Esfarjani, K. Shakouri, A. Bian, Z. Bahk, J.-H. Zeng, G. Bowers, J. Lu, H. Zide, J. and Gossard, A. J. Electron. Mater. 38, 954 (2009).Google Scholar
7 Kim, W. and Majumdar, A. J. Appl. Phys. 99, 084306 (2006).Google Scholar
8 Kim, W. Zide, J. Gossard, A. Klenov, D. Stemmer, S. Shakouri, A. and Majumdar, A. Phys Rev Lett 96, 045901 (2006).Google Scholar
9 Misra, D. M. Sumithra, S. Poudeu, P. F. P. Stokes, K. L. and Gabrisch, H. in Energy Harvesting - From Fundamentals to Devices, Mater. Res. Soc. Proc., edited by Radouski, H., Holbery, J. D. Lewis, L. H. and Schmidt, F. (MRS, Warrendale, PA, 2009), Vol. 1218E, p. 668359.Google Scholar
10 Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, USA, 2001).Google Scholar
11 Scherrer, H. and Scherrer, S. in Thermoelectrics Handbook: Macro to Nano, edited by Rowe, D. M. (CRC Press, Boca Raton, FL, USA, 2006), p. 27.Google Scholar