Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-w9nzq Total loading time: 0.413 Render date: 2021-08-03T03:29:33.332Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction

Published online by Cambridge University Press:  01 February 2011

Daphiny Pottmaier
Affiliation:
daphiny.pottmaier@unito.itmarcello.baricco@unito.it
Sebastiano Garroni
Affiliation:
sebastiano.garroni@campus.uab.cat, UAB, Fisica, Barcelona, Spain
Michela Brunelli
Affiliation:
brunelli@ill.eu, ILL, D20, Grenoble, France
Gavin B. M. Vaughan
Affiliation:
vaughan@esrf.fr, ESRF, ID11, Grenoble, France
Alberto Castellero
Affiliation:
alberto.castellero@unito.it, UNITO, Chimica IFM NIS, Turin, Italy
Enric Menéndez
Affiliation:
enric.menendez@uab.es, UAB, Fisica, Barcelona, Spain
Maria Dolors Baró
Affiliation:
Dolors.Baro@uab.es, UAB, Fisica, Barcelona, Spain
Marcello Baricco
Affiliation:
marcello.baricco@unito.it, UNITO, Chimica IFM NIS, Turin, Italy
Get access

Abstract

Light element complex hydrides (e.g. NaBH4) together with metal hydrides (e.g. MgH2) are considered two primary classes of solid state hydrogen storage materials. In spite of drawbacks such as unfavourable thermodynamics and poor kinetics, enhancements may occur in reactive hydride composites by nanostructuring of reactant phases and formation of more stable product phases (e.g. MgB2) which lower overall reaction enthalpy and allow reversibility. One potential system is based on mixing NaBH4 and MgH2 and subsequent ball milling, which in a 2:1 molar ratio can store considerable amounts of hydrogen by weight (up to 7.8 wt%). A study of the 2NaBX4 + MgX2 → MgB2 + 2NaX + 4X2 (X=D,H) reaction is assessed by means of in-situ neutron diffraction with different combinations of hydrogen and deuterium on the X position. The desorption is established to begin at temperatures as low as 250 °C, starting with decomposition of nanostructured MgX2 due to joint effects of nanostructured MgX2 and its reducing effect at NaBX4. Analyses of background profile, due to the high incoherent neutron scattering of hydrogen, as a function of temperature demonstrate direct correlation of H/D desorption reactions with relative phases amount.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zuettel, A. Borgschulte, A. Schlapbach, L. Hydrogen as Future Energy Carrier, (Wiley-VCH, Weinheim, 2008) pp. 91.CrossRefGoogle Scholar
2 Barkhordarian, G. Klassen, T. Bormann, R. International Patent No. WO2006/063627.Google Scholar
3 Vajo, J.J. Mertens, F. Ahn, C. C. Bowman, R. C. Jr. , Fultz, B. J. Phys. Chem. B 108, 1397713983 (2004).CrossRefGoogle Scholar
4 Barkhordarian, G. Klassen, T. Dornheim, M. Bormann, R. J. Alloys Compd. 440, L18–L21 (2007).CrossRefGoogle Scholar
5 Hwang, S.-J. Bowman, R.C. Jr. , Reiter, J.W. Rijssenbeek, J. Soloveichik, G.L. Zhao, J.-C. Kabbour, H., Ahn, C.C. J. Phys. Chem. C 112, 31643169 (2008).Google Scholar
6 Urgnani, J. Torres, F.J. Palumbo, M. Baricco, M. Int. J. Hydrogen Energy 33, 3111–15 (2008).CrossRefGoogle Scholar
7 Pottmaier, D. Groppo, E. Bordiga, S. Spoto, G. Baricco, M. Dehydrogenation pathway of 2NaBH4+MgH2 composite, (HYSYDAYS 2009 Proc., Turin, Italy, 2009).Google Scholar
8 Garroni, S. Pistidda, C. Brunelli, M. Vaughan, G.B.M. Suriñach, S., Baró, M.D., Scripta Mater. 60, 11291134 (2009).CrossRefGoogle Scholar
9 Lutterotti, L. Matthies, S. Wenk, H.-R. Schulz, A. J. Richardon, J. J. of Apply. Phys. 81, 594600 (1997). MAUD is available at http://www.ing.unitn.it/̃maud/CrossRefGoogle Scholar
10 Varin, R.A. CChiu, h. J. Alloys Compd. 397, 276281 (2005).CrossRefGoogle Scholar
11 Huot, J. Liang, G. Boily, S. Neste, A. Van, Schulz, R. J. Alloys Compd. 293–295, 495500 (1999).CrossRefGoogle Scholar
12 Pottmaier, D. Baricco, M. presented at the 7th COSY Project Meeting, Grenoble, France, 2009 (unpublished).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *