Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-dr4jh Total loading time: 0.224 Render date: 2021-06-21T04:57:37.773Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Morphology of Polyamideliquid Crystalline Polymer Blend

Published online by Cambridge University Press:  16 February 2011

K. Nishii
Affiliation:
FUJITSU LABORATORIES LTD., 10-1, Morinosato-Wakamiya, Atsugi 243-01, Japan
M. Usui
Affiliation:
FUJITSU LABORATORIES LTD., 10-1, Morinosato-Wakamiya, Atsugi 243-01, Japan
T. Muraya
Affiliation:
FUJITSU LABORATORIES LTD., 10-1, Morinosato-Wakamiya, Atsugi 243-01, Japan
K. Kimura
Affiliation:
FUJITSU LABORATORIES LTD., 10-1, Morinosato-Wakamiya, Atsugi 243-01, Japan
Get access

Extract

Polymer blend technology is attractive from the standpoint of both science and industry, and many combinations have been studied. Recently, the polymer blends, including liquid crystalline polymer, have been especially worthy of notice, [1,2,3]. In order to obtain materials with a high mechanical strength and moldability for use in thin molded items, we chose polyamide (PA)-liquid crystalline polymer (LCP) blends. In this study, we first measured the mechanical properties, then studied the features of the polymer structure. We also examined the relationship between morphology and mechanical properties. As a result, we found that the mechanical properties of the blends depended largely on blend morphology, and that mechanical strength increased as blend compatibility increased. On the other hand, we also found that the blends showed compatible and microheterogeneous dispersion at less than 25 wt% LCP, while at more than 30 wt% LCP, blends tended to show twophase separation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Siegmann, A., Dagan, A., and Kenig, S., Polymer 26, 1325 (1985).CrossRefGoogle Scholar
2. Kiss, C., Polymer Engineering and Science, 27 (6), 410 (1987).CrossRefGoogle Scholar
3. Harada, T., Plastic Age, 4, 174 (1989).Google Scholar
4. Kodaka, T., Polymer Alloy, 1st ed. edited by the Society of Polymer Science, Japan,. p.152 (1981).Google Scholar
5. Nishi, T., Polymer Blend, edited by CMC, Japan, p.36 (1979).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Morphology of Polyamideliquid Crystalline Polymer Blend
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Morphology of Polyamideliquid Crystalline Polymer Blend
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Morphology of Polyamideliquid Crystalline Polymer Blend
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *