Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-xklcj Total loading time: 0.183 Render date: 2021-09-26T14:12:19.228Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

MoOx as an Efficient and Stable Back Contact Buffer for Thin Film CdTe Solar Cells

Published online by Cambridge University Press:  15 June 2012

Hao Lin
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627
Wei Xia
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627
Hsiang N. Wu
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627
Ching W. Tang
Affiliation:
Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627
Irfan Irfan
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627
Yongli Gao
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627
Get access

Abstract

A low-resistance back contact for n-CdS/p-CdTe solar cells has been developed, which utilizes a thermally evaporated MoOx thin film as the buffer layer between the p-CdTe and the back electrode. The low-resistance behavior of back contact is attributed to the high work function of MoOx, which reportedly is as high as 6.8 eV, and thus adequately matches that of p-CdTe. With MoOx as the buffer, a variety of common metals, even those with a low work function such as Al, have been found to be useful as the electrode in forming the back contact. Other advantages of the MoOx buffer include dry application by vacuum deposition, and thus it is particularly suitable for the fabrication of ultra-thin CdTe solar cells without introducing additional shorting defects. Surface cleaning of CdTe films prior to MoOx deposition has also been studied. The cell stability has been evaluated through thermal annealing tests. Thermal degradation has been explained in terms of oxidation of the metal electrodes. CdTe cells with high efficiency and good stability have been demonstrated with MoOx as the back contact buffer and Ni as the electrode.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Freeouf, J. L. and Woodall, J. M., Applied Physics Letters 39, 727 (1981).CrossRefGoogle Scholar
2. Fahrenbruch, A. L., Solar Cells 21, 399 (1987).CrossRefGoogle Scholar
3. Wu, X., Zhou, J., Duda, A., Yan, Y., Teeter, G., Asher, S., Metzger, W. K., Demtsu, S., Wei, S. H. and Noufi, R., Thin Solid Films 515, 5798 (2007).CrossRefGoogle Scholar
4. Wu, X., Keane, J. C., Dhere, R. G., DeHart, C., Albin, D. S., Duda, A., Gessert, T. A., Asher, S., Levi, D. H. and Sheldon, P., in: Proceedings of the 17th European Photovoltaic Solar Energy Conference, IEEE, Munich, Germany, 2001, pp. 9951000.Google Scholar
5. Lin, H., Xia, W., Wu, H. N. and Tang, C. W., Applied Physics Letters 97, 123504 (2010).CrossRefGoogle Scholar
6. Lin, H., Irfan, , Xia, W., Wu, H. N., Gao, Y. and Tang, C. W., Solar Energy Materials and Solar Cells 99, 349 (2012).CrossRefGoogle Scholar
7. Irfan, , Lin, H., Xia, W., Wu, H. N., Tang, C. W. and Gao, Y., Solar Energy Materials and Solar Cells. Accepted.Google Scholar
8. Tyan, Y.-S., U.S. Patent 4,319,069 (1982).Google Scholar
9. Tyan, Y. S., Solar Cells 23, 19 (1988).CrossRefGoogle Scholar
10. Ferekides, C. S., Viswanathan, V. and Morel, D. L., in: Proceedings of 26th IEEE PVSC, 1997, pp. 14231426.Google Scholar
11. Niles, D. W., Li, X. N., Albin, D., Rose, D., Gessert, T. and Sheldon, P., Progress in Photovoltaics 4, 225 (1996).3.0.CO;2-6>CrossRefGoogle Scholar
12. Romeo, N., Bosio, A., Tedeschi, R., Romeo, A. and Canevari, V., Solar Energy Materials and Solar Cells 58, 209 (1999).CrossRefGoogle Scholar
13. Romeo, N., Bosio, A., Canevari, V. and Podesta, A., Solar Energy 77, 795 (2004).CrossRefGoogle Scholar
14. Makhratchev, K., Price, K. J., Ma, X., Simmons, D. A., Drayton, J., Ludwig, K., Gupta, A., Bohn, R. G. and Compaan, A. D., in: Proceedings of 28th IEEE PVSC, 2000, pp. 24752478.Google Scholar
15. Gessert, T. A., Duda, A., Asher, S. E., Narayanswamy, C. and Rose, D., in: Proceedings of the 28th IEEE PVSC Conference, 2000, pp. 26542657.Google Scholar
16. Shao, M., Fischer, A., Grecu, D., Jayamaha, U., Bykov, E., Contreras, G., Puente, , Bohn, R. G. and Compaan, A. D., Applied Physics Letters 69, 3045 (1996).CrossRefGoogle Scholar
17. Compaan, A. D., Gupta, A., Drayton, J., Lee, S. H. and Wang, S., Physica Status Solidi B-Basic Research 241, 779 (2004).CrossRefGoogle Scholar
18. Xia, W., Welt, J. A., Lin, H., Wu, H. N., Ho, M. H. and Tang, C. W., Solar Energy Materials and Solar Cells 94, 2113 (2010).CrossRefGoogle Scholar
19. Xia, W., Lin, H., Wu, H. N. and Tang, C. W., Thin Solid Films 520, 563568 (2011).CrossRefGoogle Scholar
20. McCandless, B. E. and Dobson, K. D., Solar Energy 77, 839 (2004).CrossRefGoogle Scholar
21. Waters, D. M., Niles, D., Gessert, T. A., Albin, D., Rose, D. H. and Sheldon, P., in: Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, IEEE, Vienna, Austria, 1998, pp. 10431046.Google Scholar
22. Irfan, , Ding, H. J., Gao, Y. L., Small, C., Kim, D. Y., Subbiah, J. and So, F., Applied Physics Letters 96 (2010).Google Scholar
23. Zhang, M. L., Irfan, , Ding, H. J., Gao, Y. L. and Tang, C. W., Applied Physics Letters 96, 183301 (2010).CrossRefGoogle Scholar
24. Meyer, J., Shu, A., Kroger, M. and Kahn, A., Applied Physics Letters 96, 133308 (2010).CrossRefGoogle Scholar
25. Son, M. J., Kim, S., Kwon, S. and Kim, J. W., Organic Electronics 10, 637 (2009).CrossRefGoogle Scholar
26. Hermann, K., Witko, , gt, M., Druzinic, R., Chakrabarti, A., Tepper, B., Elsner, M., Gorschlüter, A., Kuhlenbeck, H. and Freund, H. J., Journal of Electron Spectroscopy and Related Phenomena 9899, 245 (1999).CrossRefGoogle Scholar
27. Meyer, J., Zilberberg, K., Riedl, T. and Kahn, A., Journal of Applied Physics 110, 033710 (2011).CrossRefGoogle Scholar
28. “Thin film evaporation source reference”. The R.D. Mathis Company. 1987.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

MoOx as an Efficient and Stable Back Contact Buffer for Thin Film CdTe Solar Cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

MoOx as an Efficient and Stable Back Contact Buffer for Thin Film CdTe Solar Cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

MoOx as an Efficient and Stable Back Contact Buffer for Thin Film CdTe Solar Cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *