Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-pcn4s Total loading time: 0.181 Render date: 2022-05-24T19:02:56.219Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Monopolar Spin Orientation and Determination of Spin Relaxation Times in Quantum Well Structures

Published online by Cambridge University Press:  17 March 2011

Sergey D. Ganichev
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany A. F. Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia
Sergey N. Danilov
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Martin Sollinger
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Dieter Weiss
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Werner Wegscheider
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Wilhelm Prettl
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Vasily V. Bel'kov
Affiliation:
A. F. Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia
Eugenius L. Ivchenko
Affiliation:
A. F. Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia
Get access

Abstract

It is shown that monopolar optical spin orientation of free carriers in zinc-blende structure based quantum wells (QWs) causes an electric current which reverses its direction upon changing the helicity of the radiation from left to right circular polarization resulting in a circular photogalvanic effect. The monopolar non-equilibrium population of spin-up and spin-down states has been achieved by far-infrared optical excitation ofp- andn-type GaAs/AlGaAs QWs structures. Two methods are introduced allowing to determine spin relaxation times. One is based on the Hanle effect in magnetic field induced circular photogalvanic effect, the other is spin sensitive bleaching of absorption. In contrast to usually applied methods of optical spin orientation, in the present case of terahertz excitation only one kind of charge carriers is involved in spin orientation and relaxation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnar, S.von, Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M., Science 294, 1488 (2001).CrossRefGoogle Scholar
2. Damen, T.C., Vina, L., Cunningham, J.E., Shah, J., and Sham, L.J., Phys. Rev. Lett. 67, 3432 (1991).CrossRefGoogle Scholar
3. Sham, L.J., J. Phys.: Condens. Matter 5, A51 (1993).Google Scholar
4. Fabian, J., and Sarma, S. Das, J. Vac. Sci. Technol. B 17, 1708 (1999).CrossRefGoogle Scholar
5. Ganichev, S. D., Danilov, S. N., Eroms, J., Wegscheider, W., Weiss, D., Prettl, W., and Ivchenko, E. L., Phys. Rev. Lett. 86, 4358 (2001).CrossRefGoogle Scholar
6. Ganichev, S. D., Physica B 273–274, 737 (1999).CrossRefGoogle Scholar
7. Hanle, W., Ztschr. Phys. 30, 93 (1924).CrossRefGoogle Scholar
8. Optical orientation, ed. Meier, F., and Zakharchenya, B. P., (Elsevier, 1984).Google Scholar
9. Ganichev, S. D., Bel'kov, V.V., Eroms, J., Ivchenko, E. L., Tarasenko, S.A., Sollinger, M., Kalz, F.-P., Weiss, D., and Prettl, W., Proc. 9th Int. Symp. Nanostructures: Physics and Technology. St.Petersburg, Russia, p.252 (2001).Google Scholar
10. Ivchenko, E.L., Lyanda-Geller, Yu., and Pikus, G.E., JETP Lett. 50, 175 (1989)]; Sov. Phys. JETP 71, 550 (1990)].Google Scholar
11. Ivchenko, E.L., Kiselev, A.A., and Willander, M., Sol. State Commun. 102, 375 (1997).CrossRefGoogle Scholar
12. Marie, X., Amand, T., Jeune, P. Le, Paillard, M., Renucci, P., Golub, L.E., Dymnikov, V.D., and Ivchenko, E.L., Phys. Rev. 60, 5811 (1999).CrossRefGoogle Scholar
13. Beregulin, E. V., Ganichev, S. D., Glukh, K. Yu., and Yaroshetskiῐ, I. D., Sov. Phys. Semicond. 21, 615 (1987)Google Scholar
14. Helm, M., Fromherz, T., Murdin, B. N., Pidgeon, C. R., Geerinck, K. K., Hovenyer, N. J., Wenckebach, W. Th., Meer, A. F. G. van der, and Amersfoort, P. W. van, Appl. Phys. Lett. 63, 3315 (1993)CrossRefGoogle Scholar
15. Li, W. J., McCombe, B. D., Kaminski, J. P., Allen, S. J., Stockman, M. I., Muratov, L. S., Pandey, L. N., George, T. F., and Schaff, W. J., Semicond. Sci. Technol. 9, 630 (1994)CrossRefGoogle Scholar
16. Ferreira, R., and Bastard, G., Phys. Rev. B. 43, 9687 (1991).CrossRefGoogle Scholar
17. Ganichev, S. D., Ketterl, H., Prettl, W., Ivchenko, E. L., and Vorobjev, L. E., Appl. Phys. Lett. 77, 3146 (2000); S. D. Ganichev, E. L. Ivchenko, and W. Prettl, Physica E (in press).CrossRefGoogle Scholar
18. Note, that to obtain the LPGE linearly polarized radiation with the electric field vector E oriented at 45 degrees to the direction x was used.Google Scholar
19. Vorobjev, L.E., Donetskii, D.V., and Golub, L.E., JETP Lett. 63, 981 (1996)Google Scholar
20. Bastard, G., and Ferreira, R., Europhys. Lett. 23, 439 (1993).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Monopolar Spin Orientation and Determination of Spin Relaxation Times in Quantum Well Structures
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Monopolar Spin Orientation and Determination of Spin Relaxation Times in Quantum Well Structures
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Monopolar Spin Orientation and Determination of Spin Relaxation Times in Quantum Well Structures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *