Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-47mcc Total loading time: 0.175 Render date: 2022-01-23T01:31:04.020Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Monocrystalline Si Films from Transfer Processes for Thin Film Devices

Published online by Cambridge University Press:  17 March 2011

Ralf B. Bergmann
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Christopher Berge
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Titus J. Rinke
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Jürgen H. Werner
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

The transfer of thin monocrystalline silicon films to foreign substrates is of great interest for a number of applications such as silicon on insulator devices, active matrix displays and thin film solar cells. We present a transfer approach for the fabrication of monocrystalline Si films on foreign substrates based on the formation of quasi-monocrystalline Si-films. Our transfer approach is compatible with high temperature processing such as epitaxial growth at 1100°C, thermal oxidation and phosphorous diffusion. Reuse of Si host wafers is demonstrated by the subsequent epitaxial growth of three monocrystalline Si films on a single host wafer. Monocrystalline Si films with a thickness of 15 µm and a diameter of 3” are transferred to glass and flexible plastic substrates. The typical light point defect density in films transferred from virgin wafers ranges between 10 to 100 cm−2, while stacking fault and dislocation densities are ≤ 100 cm−2. The minority carrier diffusion length in the epitaxial Si films is around 50 µm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bergmann, R. B., Rinke, T. J., Oberbeck, L., and Dassow, R. in: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, Eds.: Hemment, P. L. F., Lysenko, V. S. and Nazarov, A. N., NATO Science Series 3. High Technology – Vol. 73 (Kluwer, Dordrecht, 2000), p. 109.CrossRefGoogle Scholar
2. Colinge, J.-P., MRS Bulletin 23 (12), 16 (1998).CrossRefGoogle Scholar
3. Street, R. A., phys. stat. sol. (a) 166, 695 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
4. Little, R. G. and Nowlan, M. J., Prog. Photovolt. Res. and Appl. 5, 309 (1997).3.0.CO;2-X>CrossRefGoogle Scholar
5. Bergmann, R. B., Recent Res. Devel. Crystal Growth Res. 1, 241 (1999).Google Scholar
6. Izumi, K., MRS Bulletin 23 (12), 20 (1998).CrossRefGoogle Scholar
7. Wagner, S., Gleskova, H., Ma, E. Y., Suo, Z. in: Proc. of the SPIE – The International Society for Optical Engineering, Vol. 3636 (1999), p. 32.Google Scholar
8. Bergmann, R. B. and Rinke, T. R., Prog. Photovolt.: Res. Appl. 8, 451 (2000).3.0.CO;2-R>CrossRefGoogle Scholar
9. Yonehara, T., Sakaguchi, K. and Sato, N., Appl. Phys. Lett. 64, 2108 (1994).CrossRefGoogle Scholar
10. Sakaguchi, K., Sato, N., Yamagata, K., Atoji, T., Fujiyama, Y., Nakayama, J., and Yonehara, T., IEICE Trans. Electron. E80–C, 378 (1997).Google Scholar
11. Sakaguchi, K. and Yonehara, T., Solid State Technology 43, 88 (2000).Google Scholar
12. Bruel, M., Aspar, B., and Auberton-Herve, A.-J., Jpn. J. Appl. Phys. 36, 1636 (1997).CrossRefGoogle Scholar
13. Bruel, M., Materials Research Innovations 3, 9 (1999).CrossRefGoogle Scholar
14. Bruel, M. in: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, Eds.: Hemment, P. L. F., Lysenko, V. S. and Nazarov, A. N., NATO Science Series 3. High Technology – Vol. 73 (Kluwer, Dordrecht, 2000), p. 1.Google Scholar
15. Weber, K. J., Catchpole, K., Stocks, M., and Blakers, A. W. in: Proc. 26th IEEE Photovolt. Specialists Conf. (IEEE, Picataway,1997), p. 107.Google Scholar
16. Weber, K. J., McCann, M., Catchpole, K. R., Stocks, M. and Blakers, A. W., Recent Res. Devel. Crystal Growth Res. 1, 159 (1999).Google Scholar
17. Brendel, R., Artmann, H., Oelting, S., Frey, W., Werner, J. H., and Queisser, J. H., Appl. Phys. A 67, 151 (1998).CrossRefGoogle Scholar
18. Brendel, R. and Scholten, D., Appl. Phys. A 69, 201 (1999).CrossRefGoogle Scholar
19. Tayanaka, H., Yamauchi, K., and Matsushita, T. in: Proc. 2nd World Conf. on Photovolt. Solar Energy Conversion, eds. Schmid, J., Ossenbrink, H. A., Helm, P., Ehmann, H., Dunlop, E. D. (Europ. Commission, Ispra, 1998), p. 1272.Google Scholar
20. Rinke, T. J., Bergmann, R. B., and Werner, J. H., Appl. Phys. A 68, 705 (1999).CrossRefGoogle Scholar
21. Cullis, A. G., Canham, L. T., and Calcott, P. D. J, J. Appl. Phys. 82, 909 (1997).CrossRefGoogle Scholar
22. Rinke, T. J., Bergmann, R. B., and Werner, J. H., Mat. Res. Soc. Symp. Proc. 558, 251 (1999).CrossRefGoogle Scholar
23. Manotas, S., Agullo-Rueda, F., Moreno, J. D., Martin-Palma, R. J., Guerrero-Lemus, R., and Matinez-Duart, J. M., Appl. Phys. Lett. 75, 977 (1999).CrossRefGoogle Scholar
24. Canham, L. (Volume editor) Properties of porous Silicon, in: EMIS Datareviews Series No. 18 (The Institution of Electrical Engineers, London, 1997).Google Scholar
25. d'Aragona, F. Secco, J. Electrochem. Soc. 119, 948 (1972).CrossRefGoogle Scholar
26. Kern, W. and Puotinen, D.A., RCA Rev. 6, 187 (1970)Google Scholar
27. Rinke, T. J., Bergmann, R. B. and Werner, J. H., in: Proc. 16th Europ. Photovolt. Solar Energy Conf., Eds.: Scheer, H., McNelis, B., Palz, W., Ossenbrink, H. A. and Helm, P. (James & James Science Publishers Ltd., London, 2000), p. 1128.Google Scholar
28. Bergmann, R., Rinke, T. J., Berge, C., Schnidt, J., Werner, J. H. in: 12th Internat. Photovolt. Science and Engineering Conf., Cheju, Korea, 11.–15. June 2001, accepted for presentation.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Monocrystalline Si Films from Transfer Processes for Thin Film Devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Monocrystalline Si Films from Transfer Processes for Thin Film Devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Monocrystalline Si Films from Transfer Processes for Thin Film Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *