Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-x8cck Total loading time: 0.223 Render date: 2022-11-27T19:20:05.574Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Molecular Dynamics Simulations of Hexadecane/Silicalite Interfaces

Published online by Cambridge University Press:  10 February 2011

Edmund B. Webb III
Affiliation:
Corporate Research Science Laboratories, Exxon Research & Engineering Company, Annandale, New Jersey 08801 and Sandia National Laboratories, Albuquerque, NM 87185-1411 [a]
Gary S. Grest
Affiliation:
Corporate Research Science Laboratories, Exxon Research & Engineering Company, Annandale, New Jersey 08801 and Sandia National Laboratories, Albuquerque, NM 87185-1411 [a]
Get access

Abstract

The interface between liquid hexadecane and the (010) surface of silicalite was studied by molecular dynamics. The structure of molecules in the interfacial region is influenced by the presence of pore mouths on the silicalite surface. For this surface, whose pores are the entrances to straight channels, the concentration profile for partially absorbed molecules is peaked around 10 monomers inside the zeolite. No preference to enter or exit the zeolite based on absorption length is observed except for very small or very large absorption lengths. We also found no preferential conformation of the unabsorbed tails for partially absorbed molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kärger, J. and Ruthven, D., Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1991).Google Scholar
2. van Well, W. J. M. et al., J. Phys. Chem. B 102, 3952 (1998).CrossRefGoogle Scholar
3. Reyes, S. C. et al., J. Phys. Chem. B 101, 614 (1997).CrossRefGoogle Scholar
4. Jama, M. A., Delmas, M. P. F., and Ruthven, D. M., Zeolites 18, 200 (1997).CrossRefGoogle Scholar
5. Snurr, R. Q. and Kärger, J., J. Phys. Chem. B 101, 6469 (1997).CrossRefGoogle Scholar
6. Silbernagel, B. G., Garcia, A. R., and Newsam, J. M., Coll. Surf. A 72, 71 (1993).CrossRefGoogle Scholar
7. Niessen, W. and Karge, H. G., Appl. Surf. Sci. Catal. 60, 213 (1991).CrossRefGoogle Scholar
8. Voogd, P. and Bekkum, H. V., Appl. Catal. 59, 311 (1990).CrossRefGoogle Scholar
9. Meriaudeau, P. et al., J. Catal. 169, 55 (1997).CrossRefGoogle Scholar
10. Souverijns, W. et al., Stud. Surf. Sci. Catal. 105, 1285 (1997).CrossRefGoogle Scholar
11. Feijen, E. J. P., Martens, J. A., and Jacobs, P. A., Stud. Surf. Sci. Catal. 101, 721 (1996).CrossRefGoogle Scholar
12. Martens, J. A. et al., Angew. Chem. Int. Ed. Engl. 34, 2528 (1995).CrossRefGoogle Scholar
13. Weitkamp, J. and Ernst, S., Catalysis Today 19, 107 (1994).CrossRefGoogle Scholar
14. Nijhuis, T. A. et al., Chem. Eng. Sci. 52, 3401 (1997).CrossRefGoogle Scholar
15. Bouyermaouen, A. and Bellemans, A., J. Chem. Phys. 108, 2170 (1998).CrossRefGoogle Scholar
16. Runnebaum, R. C. and Maginn, E. J., J. Phys. Chem. B 101, 6394 (1997).CrossRefGoogle Scholar
17. Jousse, F., Leherte, L., and Vercauteren, D. P., J. Mol. Catal. A: Chem. 119, 165 (1997).CrossRefGoogle Scholar
18. Keffer, D., McCormick, A. V., and Davis, A. T., Mol. Phys. 87, 367 (1996).CrossRefGoogle Scholar
19. Schrimpf, G., Tavitian, B., and Espinat, D., Revue de L'Institut Francais du Petrole 50, 105 (1996).CrossRefGoogle Scholar
20. Dumont, D. and Bougeard, D., Zeolites 15, 650 (1995).CrossRefGoogle Scholar
21. June, R. L., Bell, A. T., and Theodorou, D. N., J. Phys. Chem. 96, 1051 (1992).CrossRefGoogle Scholar
22. Catlow, C. R. A. et al., J. Chem. Soc. Faraday Trans. 87, 1947 (1991).CrossRefGoogle Scholar
23. Webb, E. B. III and Grest, G. S., J. Phys. Chem. B, submitted (1998).Google Scholar
24. Siepmann, J. I., Karaborni, S., and Smit, B., Nature 365, 330 (1993); B. Smit, S. Karaborni, and J. I. Siepmann, J. Chem. Phys. 102, 2126 (1995).CrossRefGoogle Scholar
25. Jorgensen, W. L., Madura, J. D., and Swenson, C. J., J. Am. Chem. Soc. 106, 6638 (1984).CrossRefGoogle Scholar
26. Webb, E. B. III and Grest, G. S., Catalysis Letters, in print.Google Scholar
27. Molecular Simulations Inc., San Diego, CA.Google Scholar
28. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
29. Humphrey, W., Dalke, A., and Schulten, K., J. Molec. Graphics 14, 33 (1996).CrossRefGoogle Scholar
30. Xia, T. K., Ouyang, J., Ribarsky, M. W., and Landman, U., Phys. Rev. Lett. 69, 1967 (1992).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular Dynamics Simulations of Hexadecane/Silicalite Interfaces
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Molecular Dynamics Simulations of Hexadecane/Silicalite Interfaces
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Molecular Dynamics Simulations of Hexadecane/Silicalite Interfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *