Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-85hf2 Total loading time: 0.199 Render date: 2021-09-26T02:12:15.307Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Molecular Dynamics Simulation of Alkali Borate Glass Using Coordination Dependent Potential

Published online by Cambridge University Press:  10 February 2011

Byeongwon Park
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, NY 14802, parkbw@bushbaby.alfred.edu
Alastair N. Cormack
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, NY 14802, cormack@bigvax.alfred.edu
Get access

Abstract

The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO3, triangle, BO4 tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Huang, C. and Cormack, A. N., J. Chem. Phys., 93, 8180 (1990).CrossRefGoogle Scholar
[2] Huang, C. and Cormack, A. N., J. Chem. Phys., 95, 3634 (1991).CrossRefGoogle Scholar
[3] Huang, C. and Cormack, A. N., J. Mater. Chem., 2, 281 (1992).CrossRefGoogle Scholar
[4] Smith, W., Greaves, G. N., and Gillan, M. J., J. Chem. Phys., 103, 3091 (1995).CrossRefGoogle Scholar
[5] Vashishta, P., Kalia, R. K., Jin, W., and Nakano, A., in Diffusion in amorphous materials.Google Scholar
Jain, H. and Gupta, D., Eds.: The Mineral, Metal & Materials Society, 1994, p. 129.Google Scholar
[6] Vessai, B., Amini, M., and Catlow, C. R. A., J. Non-Cryst. Solids, 159, 184 (1993).CrossRefGoogle Scholar
[7] Takada, A., Calow, C. R. A., and Price, G. D., J. Phys.: Condens. Matter, 7, 8693 (1995).Google Scholar
[8] Park, B. and Cormack, A. N., presented at The second international conference on borate glasses, crystals & melts, Abingdon, UK, 1996.Google Scholar
[9] Jellison, G. E. and Bray, P. J., J. NOn-Cryst. Solids, 29, 187 (1978).CrossRefGoogle Scholar
[10] Feller, S. A., Dell, W. J., and Bray, P. J., J. Non-Cryst. Solids, 51, 21 (1982).CrossRefGoogle Scholar
[11] Bray, P. J., J. Non-Cryst. Solids,. 75, 29 (1985).CrossRefGoogle Scholar
[12] Griscom, D. L., in Borate Glasses: Structure, Properties. Applications, vol. 12, Materials science research, Pye, L. D., Frechette, V. D., and Kreidl, N. J., Eds. New York: Plenum Press, 1978, p. 11.CrossRefGoogle Scholar
[13] Krogh-Moe, J., Phys. Chem. Glasses, 3, 101 (1962).Google Scholar
[14] Jellison, G. E., Feller, S. A., and Bray, P. J., Phys. Chem. Glasses, 19, 52 (1978).Google Scholar
[15] Soules, T. F., J. Chem. Phys., 78, 4032 (1980).CrossRefGoogle Scholar
[16] Amini, M., Mitra, S. K., and Hockney, R. W., J. Phys. C: Solid State Phys., 14, 3689 (1981).CrossRefGoogle Scholar
[17] Inoue, H., Aoki, N., and Yasui, I., J. Am. Ceram. Soc, 70, 622 (1987).CrossRefGoogle Scholar
[18] Xu, Q., Kawamura, K., and Yokokawa, T., J. Non-Cryst. Solids, 104, 261 (1988).CrossRefGoogle Scholar
[19] Abramo, M. C. and Pizzimenti, G., J. Non-Cryst. Solids, 85, 233 (1986).CrossRefGoogle Scholar
[20] Soppe, W., Marel, C. v. d., Gunsteren, W. F. v., and Hartog, H. W. d., J. Non-Cryst. Solids, 103, 201 (1988).CrossRefGoogle Scholar
[21] Verhoef, A. H. and Hartog, H. W. d., J. Non-Cryst. Solids, 146, 267 (1992).CrossRefGoogle Scholar
[22] Hirao, K. and Soga, N., J. Am. Ceram. Soc, 68, 515 (1985).CrossRefGoogle Scholar
[23] Abramo, M. C., Carini, G., and Pizzimenti, G., J. Phys. C: Solid State Physics, 21, 527 (1988).CrossRefGoogle Scholar
[24] Soppe, W., Marel, C. v. d., and Hartog, H. W. d., J. Non-Cryst. Solids, 101, 101 (1988).CrossRefGoogle Scholar
[25] Verhoef, A. H. and Hartog, H. W. d., J. Non-Cryst. Solids, 182, 235 (1995).CrossRefGoogle Scholar
[26] Takada, A., Catlow, C. R. A., and Price, G. D., J. Phys.: Condens. Matter, 7, 8659 (1995).Google Scholar
[27] Walker, J. R., in Computer simulation of solids, vol. 166, Lecture notes in Physics, Calow, C. R. A. and Mackrodt, W. C., Eds. Berlin: Springer-Verlag, 1982.CrossRefGoogle Scholar
[28] Hannon, A. C., Grimley, D. I., Hulme, R. A., Wright, A. C., and Sinclair, R. N., J. Non-Cryst. Solids, 177, 299 (1994).CrossRefGoogle Scholar
[29] Johnson, P. A. V., Wright, A. C., and Sinclair, R. N., J. Non-Cryst. Solids, 50, 281 (1982).CrossRefGoogle Scholar
[30] Clare, A. C., Etherington, G., Wright, A. C., Weber, M. J., Drawer, S. A., and Kingman, D. D., J. Chem. Phys., 91, 6380 (1989).CrossRefGoogle Scholar
[31] Krogh-Moe, J., J. Non-Cryst. Solids, 1, 269 (1969).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular Dynamics Simulation of Alkali Borate Glass Using Coordination Dependent Potential
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular Dynamics Simulation of Alkali Borate Glass Using Coordination Dependent Potential
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular Dynamics Simulation of Alkali Borate Glass Using Coordination Dependent Potential
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *