Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-xdj6x Total loading time: 0.165 Render date: 2021-09-26T23:33:30.876Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Molecular Dynamics of Monomer, Oligomer, and Polymer Liquids in Porous Media: A Field-Cycling Nmr Relaxometry and NMR Field-Gradient Diffusometry Study

Published online by Cambridge University Press:  15 February 2011

R. Kimmich
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
S. Stapf
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
R.-O. Seitter
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
P. Callaghan
Affiliation:
Massey University, Department of Physics and Biophysics, Palmerston North, New Zealand
E. Khozina
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
Get access

Abstract

The molecular dynamics of fluids in porous media has been studied using field-cycling NMR relaxometry and NMR field-gradient diffusometry. The frequency dependences of the 1H and 2H spin-lattice relaxation times T 1 of various liquids in porous glass reveal weak and strong adsorption behaviour depending on the polarity of the adsorbates. Correlation times eight orders of magnitude longer than in bulk have been observed. The T 1 dispersion moreover reflects geometrical details of the matrix in a length scale three orders of magnitude longer than the adsorbate molecules. The mean-square displacements of adsorbate molecules on the surface are only one order of magnitude less than in bulk. The global diffusivity is reduced by tortuosity and porosity effects. The observed phenomena may be explained by bulk-mediated surface diffusion, i.e., Lévy walks. The dynamics of polymer chains much longer than the pore size is characteristicly different from that in bulk melts. There is evidence that the reptation mechanism explains at least a part of the phenomena observed for the porous matrix in contrast to findings with bulk polymer melts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abragam, A., The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).Google Scholar
2. Kimmich, R. and Weber, H. W., Phys. Rev. B 47, 11 788 (1993).CrossRefGoogle Scholar
3. König, S., Sackmann, E., Richter, D., Zorn, R., Carlile, C., and Bayerl, T. M., J. Chem. Phys. 100, 3307 (1994).CrossRefGoogle Scholar
4. Migchelsen, C. and Berendsen, H. J. C., J. Chem. Phys. 59, 296 (1973).CrossRefGoogle Scholar
5. Kimmich, R., Nusser, W., and Gneiting, T., Colloids and Surfaces 45, 283 (1990).CrossRefGoogle Scholar
6. Stapf, S., Kimmich, R., and NieS, J., J. Appl. Phys. 75, 529 (1994).CrossRefGoogle Scholar
7. Kärger, J. and Ruthven, M., Diffusion in Zeolites (Wiley, New York, 1992).Google Scholar
8. Dullien, F. A. L., Porous Media, Fluid Transport and Pore Structure (Academic Press, New York, 1979).Google Scholar
9. Orbach, R., Science 231, 814 (1986).CrossRefGoogle Scholar
10. Klafter, J., Zumofen, G., and Blumen, A., J. Phys. A: Math. Gen. 24, 4835 (1991).CrossRefGoogle Scholar
11. Klammler, F. and Kimmich, R., Croat. Chem. Acta 65, 455 (1992).Google Scholar
12. Kimmich, R., Klammler, F., Skirda, V. D., Serebrennikova, I. A., Maklakov, A. I., and Fatkullin, N., Appl. Magn. Reson. 4, 425 (1993).CrossRefGoogle Scholar
13. Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., and Zelaya, F. O., Nature 351, 467 (1991).CrossRefGoogle Scholar
14. Noack, F., Progr. in NMR Spectr. 18, 171 (1986).CrossRefGoogle Scholar
15. Kimmich, R. and Fischer, E., J. Magn. Reson. A 106, 229 (1994).CrossRefGoogle Scholar
16. Kärger, J., Pfeifer, H., and Heink, W., Adv. Magn. Reson. 12, 1 (1988).CrossRefGoogle Scholar
17. Levitz, P., Ehret, G., Sinha, S. K., and Drake, J. M., J. Chem. Phys. 95, 6151 (1992).CrossRefGoogle Scholar
18. Kimmich, R., Magn. Reson. Imag. 9, 749 (1991).CrossRefGoogle Scholar
19. Kärger, J., Pfeifer, H., and Vojta, G., Phys. Rev. A 37, 4514 (1988).CrossRefGoogle Scholar
20. Kärger, J., Lenzner, J., Pfeifer, H., Schwabe, H., Heyer, W., Janowski, F., Wolf, F., Ždanov, S., J. Am. Ceram. Soc. 66, 69 (1982).CrossRefGoogle Scholar
21. Polnaszek, C. F. and Bryant, R. G., J. Chem. Phys. 81, 4038 (1984).CrossRefGoogle Scholar
22. Ahlström, P., Teleman, O., and Jdnsson, B., J. Am. Chem. Soc. 110, 4198 (1988).CrossRefGoogle Scholar
23. Kärger, J., Pfeifer, H., Riedel, E., and Winkler, H., J. Coll. Interface Sci. 44, 187 (1973).CrossRefGoogle Scholar
24. D'Orazio, F., Bhattacharja, S., Halperin, W. P., and Gerhardt, R., Phys. Rev. Lett. 63, 43 (1989).CrossRefGoogle Scholar
25. Kimmich, R., Stapf, S., Callaghan, P., and Coy, A., Magn. Reson. Imaging 12, 339 (1994).CrossRefGoogle Scholar
26. Bychuk, O. V. and O'Shaughnessy, B., J. Chem. Phys. 101, 772 (1994).CrossRefGoogle Scholar
27. Xia, T. K., Ouyang, J., Ribarsky, M. W., and Landman, U., J. Chem. Phys. 69, 1967 (1992).Google Scholar
28. Hentschke, R. and Winkler, R. G., J. Chem. Phys. 99, 5528 (1993).CrossRefGoogle Scholar
29. Overloop, K. and Van Gerven, L., J. Magn. Reson. A 101, 147 (1993).CrossRefGoogle Scholar
30. Bychuk, O. V. and O'Shaughnessy, B., J. Phys. II 4, 1135 (1994).Google Scholar
31. Blumen, A., Zumofen, G., and Klafter, J., Phys. Rev. A 40, 3964 (1989).CrossRefGoogle Scholar
32. de Gennes, P. G., J. Chem. Phys. 55, 572 (1971).CrossRefGoogle Scholar
33. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
34. Schweizer, K. S., J. Chem. Phys. 91, 5802 (1989).CrossRefGoogle Scholar
35. Fatkullin, N. and Kimmich, R., J. Chem. Phys. 101, 822 (1994).CrossRefGoogle Scholar
36. Kimmich, R., Fatkullin, N., Weber, H. W., and Stapf, S., J. Non-Cryst. Solids 172–174, 689 (1994).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular Dynamics of Monomer, Oligomer, and Polymer Liquids in Porous Media: A Field-Cycling Nmr Relaxometry and NMR Field-Gradient Diffusometry Study
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular Dynamics of Monomer, Oligomer, and Polymer Liquids in Porous Media: A Field-Cycling Nmr Relaxometry and NMR Field-Gradient Diffusometry Study
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular Dynamics of Monomer, Oligomer, and Polymer Liquids in Porous Media: A Field-Cycling Nmr Relaxometry and NMR Field-Gradient Diffusometry Study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *