Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-8tjh8 Total loading time: 0.148 Render date: 2021-10-22T14:09:29.653Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Modelling of Joule heating based self-alignment method for metal grid line passivation

Published online by Cambridge University Press:  04 February 2014

M. Janka
Affiliation:
Department of Electronics and Communications Engineering, Tampere University of Technology, P.O.Box 692, FI-33101 Tampere, Finland
P. Raumonen
Affiliation:
Department of Mathematics, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere, Finland
S. Tuukkanen
Affiliation:
Department of Electronics and Communications Engineering, Tampere University of Technology, P.O.Box 692, FI-33101 Tampere, Finland
D. Lupo
Affiliation:
Department of Electronics and Communications Engineering, Tampere University of Technology, P.O.Box 692, FI-33101 Tampere, Finland
Get access

Abstract

A Joule heating based self-alignment method for solution-processable insulator structures has been modeled for the passivation of metal grid lines, for example for organic light emitting diodes or photovoltaic cells. To minimize overhang of the passivation layer from line edges, we have studied the Joule heating approach using solution-processable, cross-linkable polymer insulator films. Finite element simulations were performed to investigate the heating of the sample using glass and poly(ethylene terephthalate) (PET) substrates. The sample was at room temperature and the current was selected to induce a temperature of 410 K at the conductor. It was found that the selection of substrate material is crucial for the localization of cross-linking. For a PET substrate, the temperature gradient at the edge of the conductor is approximately twice the gradient for glass. As a result, using a glass substrate demands high selectivity from the polymer cross-linking, thus making PET a more suitable substrate material for our application. A flexible PET substrate is, in addition, compatible with roll-to-roll mass-manufacturing processes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Choi, S., Potscavage, W. J., and Kippelen, B., J. Appl.Phys. 106, 054507 (2009).CrossRef
Neyts, K., Marescaux, M., Nieto, A. U., Elschner, A., Lovenich, W., Fehse, K., Huang, Q., Walzer, K., and Leo, K., J. Appl.Phys. 100, 114513 (2006).CrossRef
Janka, M., Tuukkanen, S., Joutsenoja, T., and Lupo, D., Thin Solid Films, 519, 6587 (2011).CrossRef
Raumonen, P., Suuriniemi, S., Kettunen, L., IET Sci. Meas. Technol. 2, 286 (2008).CrossRef
Saka, M., Sun, Y., Ahmed, S., Int. J. Therm. Sci. 48, 114 (2009).CrossRef
Özisik, M, Boundary value problems of heat conduction, (Dover Publications, Mineola, N.Y., 2002) p. 8.Google Scholar
Shewchuk, J. R., Proc. 11th Int. Meshing Roundtable, New York, Ithaca, 115 (2002).Google Scholar
Bejan, A. and Kraus, A. D., Heat Transfer Handbook, (John Wiley & Sons, 2003), p.135.Google Scholar
Brandrup, J., Immergut, E. H., Grulke, E. A. A., and Akihiro Bloch, D. R., Polymer Handbook, 4th ed. (John Wiley & Sons, 1999) p. V/113.Google Scholar
Thuau, D., Koymen, I., and Cheung, R., Microelectronic Engineering. 88, 2408 (2011).CrossRef
Jiang, F. X., Xu, J. K., Lu, B. Y., Xie, Y., Huang, R. J., and Li, L. F., Chinese Physics Letters. 25, 2202 ( 2008) .CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Modelling of Joule heating based self-alignment method for metal grid line passivation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Modelling of Joule heating based self-alignment method for metal grid line passivation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Modelling of Joule heating based self-alignment method for metal grid line passivation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *