Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-s5ssh Total loading time: 0.166 Render date: 2021-06-21T08:16:47.849Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Modeling Ultra Shallow Junctions Formed by Phosphorus-Carbon and Boron-Carbon Co-implantation

Published online by Cambridge University Press:  21 April 2011

Christoph Zechner
Affiliation:
Synopsys Switzerland LLC, Affolternstrasse 52, Zurich, CH-8050, Switzerland
Dmitri Matveev
Affiliation:
Synopsys Switzerland LLC, Affolternstrasse 52, Zurich, CH-8050, Switzerland
Nikolas Zographos
Affiliation:
Synopsys Switzerland LLC, Affolternstrasse 52, Zurich, CH-8050, Switzerland
Victor Moroz
Affiliation:
Synopsys, Incorporated, 700 East Middlefield Road, Mountain View, CA, 94043
Bartek Pawlak
Affiliation:
NXP Semiconductors, Kapeldreef 75, Leuven, B-3001, Belgium
Get access

Abstract

A new carbon-interstitial clustering model has been developed. The model has been implemented into the process simulator Sentaurus Process. Model parameters have been calibrated using fundamental marker layer experiments. B diffusion retardation in the C doped layer as well as Sb diffusion enhancement in the region close to a layer with high C concentration are successfully simulated. The calibrated model has been applied to simulations of ultra-shallow junction formation by high dose P-C and B-C co-implantation. It is assumed that, in regions which are amorphized by ion implantation and recrystallized by solid phase epitaxy, C is in the substitutional state right after the recrystallization. In contrast, in non-amorphized regions, C is assumed to be in clusters at the beginning of thermal annealing. A good agreement between simulation and experimental results has been achieved. The dependence of dopant diffusion on implanted C dose and spike annealing temperature has been reproduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Pawlak, B.J., Janssens, T., Brijs, B., Vandervorst, W., Felch, S.B., Collart, E.J.H., Cowern, N.E.B., Appl. Phys. Lett. 89, 062110 (2006)CrossRefGoogle Scholar
2. Pawlak, B.J., Duffy, R., Janssens, T., Wandervorst, W., Felch, S.B., Collart, E.J.H., Cowern, N.E.B., Appl. Phys. Lett. 89, 062102 (2006)CrossRefGoogle Scholar
3. Moroz, V., Oh, Y.-S., Pramanik, D., Graoui, H., Foad, M., Appl. Phys. Lett. 87, 051908 (2005)CrossRefGoogle Scholar
4. Colombeau, B. and Cowern, N.E.B, Semiconductor Science and Technology 19, 1339 (2004)CrossRefGoogle Scholar
5. Pichler, P., fiIntrinsic Point Defects, Impurities and Their Diffusion in Siliconfl, Springer 2004, Vienna CrossRefGoogle Scholar
6. Laveant, P., PhD thesis, MPI, Germany, 2002 Google Scholar
7. Sentaurus Process User Manual, Synopsys Inc., June 2006 Google Scholar
8. Ruecker, H., Heinemann, B., Ropke, W., Kurps, R., Kruger, D., Appl. Phys. Lett. 73, 1682 (1998)CrossRefGoogle Scholar
9. Advanced Calibration User Manual, Synopsys Inc., June 2006 Google Scholar
10. Duffy, R., Venezia, V.C., Heringa, A., Pawlak, B.J., Hopstaken, M.J.P., Maas, G.C.J., Tamminga, Y., Dao, T., Roozeboom, F., Pelaz, L., Appl. Phys. Lett. 84, 4283 (2004)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Modeling Ultra Shallow Junctions Formed by Phosphorus-Carbon and Boron-Carbon Co-implantation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Modeling Ultra Shallow Junctions Formed by Phosphorus-Carbon and Boron-Carbon Co-implantation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Modeling Ultra Shallow Junctions Formed by Phosphorus-Carbon and Boron-Carbon Co-implantation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *