Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T17:58:21.262Z Has data issue: false hasContentIssue false

MOCVD of Nb Substituted SrBi2Ta2O9 for Integrated Ferroelectric Capacitors

Published online by Cambridge University Press:  10 February 2011

B. C. Hendrix
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810, bhendrix@ATMI.com
T. E. Glassman
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810, bhendrix@ATMI.com
J. F. Roeder
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810, bhendrix@ATMI.com
Get access

Abstract

The Bi layered perovskites are promising materials for ferroelectric random access memories (FeRAM's) because of their inherently high resistance to fatigue. Liquid delivery, flash vaporization metalorganic chemical vapor deposition (LD-MOCVD) is an attractive process for these materials, because it offers the ability to produce high quality, conformal films of controlled composition for both high and low density memory applications. We have developed a well-controlled process to deposit Nb-substituted SrBi2Ta2O9 (SBNT) using a mixed alkoxide-β-diketonate precursor Nb(O-i-Pr)4(thd) that is compatible with a previously developed precursor suite for SBT (Sr(thd)2-pmdeta, Bi(thd)3, and Ta(O-i-Pr)4(thd)). The Nb and Ta precursors behave in the same way in the process, making the Nb substitution level in the film identical to that in the precursor solution. In this study, wavelength dispersive x-ray fluorescence has been used to characterize composition and thickness. As-deposited films are smooth, with a surface roughness of 2 nm RMS. After a post-deposition annealing treatment, a high quality layered perovskite crystal structure was obtained. The resultant ferroelectric hysteresis shows a 50% increase in coercive voltage for 28% Nb substitution at the Ta site with the same switchable polarization. In the 28% Nb containing film, imprint was significantly improved compared to SBT films without substitution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moise, T., Summerfelt, S., Celii, F., Columbo, L., Xing, G., Sakoda, T., Bilodeau, S., Johnston, S., Russell, M., Vestyck, D., Buskirk, P. Van, presented at Ferroelectric Thin Films VIII, Fall ‘99 MRS, Dec. 1, 1999, Boston, MA.Google Scholar
2. Hintermaier, F., Hendrix, B. C., Desrochers, D. A., Roeder, J. F., Baum, T. H., Buskirk, P. Van, Bolten, D., Grossmann, M., Lohse, O., Schumacher, M., Waser, R., Cerva, H., Dehm, C., Fritsch, E., Honlein, W., Mazure, C., Nagel, N., Thwaite, P., Wendt, H., Integrated Ferroelectrics 21, p. 367 (1998).Google Scholar
3. Wanatabe, H., Mihara, T., Yoshimori, H., Araujo, C. A. Paz de, Jpn. J. Appl. Phys. 34, p. 5240 (1995).Google Scholar
4. Takemura, K., Noguchi, T., Hase, T., Kimura, H., Miyasaka, Y., Ferroelectric Thin Films VII, edited by Jones, R. E., Schwartz, R. W., Summerfelt, S. R., Yoo, I. K. (Mater. Res. Soc. Proc. 541, Pittsburgh, PA 1999), p. 235.Google Scholar
5. Yang, P., Zheng, L., Lin, C., Pignolet, A., Curran, C., Alexe, M., Hesse, D., J. Kor. Phys. Soc. 32, p. S1383 (1998).Google Scholar
6. Furuya, A., Cuchiaro, J. D., J. Appl. Phys. 84, p. 6788 (1998).Google Scholar
7. Hendrix, B. C., Hintermaier, F., Desrochers, D. A., Roeder, J. F., Baum, T. H., Dehm, C., Nagel, N., Honlein, W., Mazure, C., Ferroelectric Thin Films VII, edited by Jones, R. E., Schwartz, R. W., Summerfelt, S. R., Yoo, I.K. (Mater. Res. Soc. Proc. 541, Pittsburgh, PA 1999), p. 275.Google Scholar
8. Lee, K. M., Thomas, D., Kim, S. H., Maria, J. P., Kingon, A. I., Jang, H. M., Ferroelectric Thin Films VII, edited by Jones, R. E., Schwartz, R. W., Summerfelt, S. R., Yoo, I. K. (Mater. Res. Soc. Proc. 541, Pittsburgh, PA 1999), p. 241.Google Scholar