Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-19T02:53:51.592Z Has data issue: false hasContentIssue false

Mixing and Segregation Processes in Turbula Blender

Published online by Cambridge University Press:  01 February 2011

Nathalie Sommier
Laboratoire de Physique Pharmaceutique, UMR 8612 CNRS - Université Paris XI, 92296 Châtenay-Malabry cedex, France.
Patrice Porion
Centre de Recherche sur la Matière Divisée, UMR 6619 CNRS - Université d'Orléans, F-45071 Orléans cedex 2, France.
Pierre Evesque
Laboratoire de Mécanique MSSM, UMR 8579 CNRS - Ecole Centrale Paris, F-92295 Châtenay-Malabry cedex, France
Get access


Magnetic Resonance Imaging (MRI) technique was used to study the mixing and segregation processes of granular materials in a sophisticated tumbling blender (Turbula® mixer) using binary mixtures of sugar beads of different diameters d. Its motion generates mixtures with complex patterns. Effects of some parameters (beads diameter ratio, rotation speed, mixing time) were checked on segregation and mixing processes. We report in this paper, a qualitative and quantitative analysis of these phenomena. A segregation index S was defined to study the homogeneity and the kinetics of the mixing/segregation processes. When the ratio of bead diameters dmax/dmin is approximately 1, mixing process is observed but segregation occurs as soon as dmax/dmin is greater than 1.1.

Research Article
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Oyona, Y., Bull. Inst. Phys. Chem. Res. (Tokyo) 5, 600 (1939);Google Scholar
Oyona, Y. and Ayaki, K., Kagaku Kikai 20, 6 (1956).Google Scholar
2. Donald, M. and Roseman, B., Br. Chem. Eng. 7, 749 (1962).Google Scholar
3. Williams, J. C., Powder Technol. 15, 237 (1976).Google Scholar
4. Bridgwater, J., Powder Technol. 15, 215 (1976).Google Scholar
5. Gupta, S. D., Khakhar, D. V., and Bhatia, S. K., Chem. Eng. Sci. 46, 1513 (1991).Google Scholar
6. Savage, S. B., in Disorder and Granular Media, edited by Bideau, D. and Hansen, A. (North-Holland, Amsterdam, 1993), p. 255.Google Scholar
7. Hogg, R. and Fuerstenau, D. W., Powder Technol. 6, 139 (1972).Google Scholar
8. Hill, K. M., Caprihan, A., and Kakalios, J., Phys. Rev. Lett. 78, 50 (1997); Phys. Rev. E 56, 4386 (1997).Google Scholar
9. Nakagawa, M., Altobelli, S. A., Caprihan, A., Fukushima, E., and Jeong, E. K., Exp. Fluids 16, 54 (1993).Google Scholar
10. Nakagawa, M., Altobelli, S. A., Caprihan, A., and Fukushima, E., in Powders and Grains 97, edited by Behringer, R. and Jenkins, J. (Balkema, Rotterdam, 1997), pp. 447450.Google Scholar
11. Ehrichs, E. E., Jaeger, H. M., Karczmar, G. S., Knight, J. B., Kuperman, V. Y., and Nagel, S. R., Science 267, 1632 (1995).Google Scholar
12. Kuperman, V. Y., Ehrichs, E. E., Jaeger, H. M., and Karczmar, G. S., Rev. Sci. Instrum. 66, 4350 (1995).Google Scholar
13. Caprihan, A., Fukushima, E., Rosato, A. D., and Kos, M., Rev. Sci. Instrum. 68, 4217 (1997).Google Scholar
14. Jaeger, H. M., Nagel, S. R., and Behringer, R. P., Rev. Mod. Phys. 68, 1259 (1996).Google Scholar
15. Aref, H., J. Fluid Mech. 143, 1 (1984).Google Scholar
16. Ottino, J. M., The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge Univ. Press, Cambridge, 1989).Google Scholar
17. Ottino, J. M., Annu. Rev. Fluid Mech. 22, 207 (1990).Google Scholar
18. Schatz, P., Deutsches Reichspatent Nr. 589 452 in Der allgemeinen Getriebeklasse (1933); US Patent Nr. 2 302 804 (1942).Google Scholar
19. Callaghan, P. T., Principles of Nuclear Magnetic Resonance Microscopy (Clarendon Press, Oxford, 1991).Google Scholar
20. Lacey, P. M. C., J. Appl. Chem. 4, 257 (1954).Google Scholar
21. Porion, P., Sommier, N., and Evesque, P., Europhys. Lett. (to be published).Google Scholar
22. Dury, C. M. and Ristow, G. H., Phys. Fluids 11, 1387 (1999).Google Scholar