Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-ljdsm Total loading time: 0.151 Render date: 2021-07-29T10:35:49.422Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Microstructure and Residual Stresses in Al2O3 Prepared by Ion Beam Assisted Deposition

Published online by Cambridge University Press:  22 February 2011

M. G. Goldiner
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI 48109
G. S. Was
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI 48109
L. J. Parfitt
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
J. W. Jones
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

Alumina films synthesized by ion beam assisted deposition (EBAD) were characterized in terms of their microstructure and residual stress. Normalized energy per deposited atom, En, ranged from 0 to 130 eV/atom. The microstructure of PVD films (En=0) is a mixture of crystalline (γ-Al2O3) and amorphous phases and IBAD films are amorphous. Density and stoichiometry vary between 2.6 and 3.1 g/cm3 and 1.3 and 1.6, respectively. Neither are dependent on either ion-to-atom arrival rate ratio, R, or En. The film porosity is in the form of small (4-6 nm) voids of density 1017 - 1018 cm-3. Bombarding gas is incorporated with 80% efficiency to levels of 4-5 at. %. A tensile residual stress of 0.3 GPa exists in PVD films. A rapid transition to high compressive stresses occurs with increased En, with a saturation of -0.4 GPa occurring at high En There is a strong correlation between gas incorporation and residual film stress. However, no existing models are capable of providing a quantitative explanation of the results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Doerner, M. F. and Nix, W. D., CRC Critical Reviews in Solid State and Materials Science 14 (1988) 224.Google Scholar
2 Smidt, F. A., Int. Materials Review 35 (1990) 61.Google Scholar
3 Rossnagel, S. M. and Cuomo, J. J., Thin Solid Films 171 (1989) 143.CrossRefGoogle Scholar
4 Was, G. S., Jones, J. W., Parfitt, L. J., Kalnas, C. E., Hoffman, D. W., in Int. Conference on Beam Processing of Advanced Materials, edited by Singh, J. and Copley, S. M. (TMS, 1993) p. 489.Google Scholar
5 Krishna, M. C., Kanakaraju, S., Rao, K. N. and Mohan, S., Mat. Sci. Eng. B21 (1993) 10.CrossRefGoogle Scholar
6 Dolitle, L. R., Nucl. Inst. Meth. B9 (1985) 334.Google Scholar
7 Guinier, A. and Fournet, G., Small Angle Scattering of X-rays (Willey, New York, 1955).Google Scholar
8 Finegan, J. D. and Hoffman, R. W., in Trans. 8th National Symposium (Pergamon Press, Elmsford, New York, 1961) p. 935.Google Scholar
9 Muller, K.-N., Netterfield, R. P. and Martin, P. J., Phys. Rev. B35 (1987) 2934.CrossRefGoogle Scholar
10 Netterfield, R. P., Santy, W. G., Martin, P. J. and Appl. Opt. 24 (1985) 2267.CrossRefGoogle Scholar
11 Jones, F., J. Vac. Sci. Techn. A6 (1988) 3088.CrossRefGoogle Scholar
12 Kao, A. S. and Gorman, G. L., J. Appl. Phys. 67 (1990) 3826.Google Scholar
13 Davis, C. A., Thin Solid Films 226 (1993) 30.CrossRefGoogle Scholar
14 Windischmann, H., J. Appl. Phys. 62 (1987)1800.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microstructure and Residual Stresses in Al2O3 Prepared by Ion Beam Assisted Deposition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microstructure and Residual Stresses in Al2O3 Prepared by Ion Beam Assisted Deposition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microstructure and Residual Stresses in Al2O3 Prepared by Ion Beam Assisted Deposition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *