Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-6zkrn Total loading time: 0.526 Render date: 2023-02-06T04:30:59.721Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

MgH2 by Gas Phase Condensation: Nanostructure Morphology and Hydrogen Sorption Behaviour

Published online by Cambridge University Press:  01 February 2011

Ennio Bonetti
Affiliation:
ennio.bonetti@unibo.it, Università di Bologna, Department of Physics, viale Berti Pichat 6/2, Bologna, 40127, Italy
Elsa Callini
Affiliation:
elsa.callini@studio.unibo.it, Universita' di Bologna and CNISM, Department of Physics, viale Berti Pichat 6/2, Bologna, 40127, Italy
Amelia Montone
Affiliation:
montone@casaccia.enea.it, ENEA, FIM Department, C.R. Casaccia C.P. 2400, Rome, 00123, Italy
Luca Pasquini
Affiliation:
luca.pasquini@unibo.it, Universita' di Bologna and CNISM, Department of Physics, viale Berti Pichat 6/2, Bologna, 40127, Italy
Emanuela Piscopiello
Affiliation:
emanuela.piscopiello@brindisi.enea.it, ENEA, C.R. Brindisi, via Appia km 706, Brindisi, 72100, Italy
Marco Vittori Antisari
Affiliation:
vittori@casaccia.enea.it, ENEA, FIM Department, C.R. Casaccia C.P. 2400, Rome, 00123, Italy
Get access

Abstract

Inert gas condensation was employed to prepare nanoparticles of Mg and MgH2 which morphology, clustering degree and structural stability have been investigated by X-ray diffraction and electron microscopy. Thermodynamic functional properties of the Mg and MgH2 nanostructured samples were investigated by high pressure differential scanning calorimetry. Some specific features of the morphology of the samples prepared by inert gas condensation are compared with powders obtained by ball milling through desorption kinetics behavior.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schulz, R., Boily, S., Zaluski, L., Zaluska, A., Tessier, P., Olsen, J.O. Strom, Innovation Met., Mater., (1995) 529.Google Scholar
2. Liang, G., Huot, J., Boily, S., Schulz, R., J. Alloy. Compd. 305 (2000) 239.CrossRefGoogle Scholar
3. Zaluska, A., Zaluski, L., Olsen, J.O. Strom, Appl. Phys. A, 72 (2001) 157.10.1007/s003390100783CrossRefGoogle Scholar
4. Bobet, J.L., Akiba, E., Darriet, B., Int. J. Hydrogen Energy, 26 (2001) 493.CrossRefGoogle Scholar
5. Oelerich, W., Klassen, T., Bormann, R., J. Alloys Compd. 315 (2001) 237.CrossRefGoogle Scholar
6. Fujii, H., Orimo, S., Physica B, 328 (2003) 77.CrossRefGoogle Scholar
7. Cecchetto, R., Bazzanella, N., Miotello, A., Maurizio, C., D'Acapito, F., Mengucci, P., Barucca, G., and Majni, G., Appl. Phys. Lett. 87 (2005) 061904.CrossRefGoogle Scholar
8. Friedrichs, O., Kolodziejczyk, L., Lopez, J.C. Sanchez, Cartez, C. Lopez, Fernandez, A., J. Alloys. Compd., 434 (2007) 721.CrossRefGoogle Scholar
9. Barkhordarian, G., Klassen, T., Bormann, R., Scripta Mat., 49 (2003) 2013.CrossRefGoogle Scholar
10. Bassetti, A., Bonetti, E., Pasquini, L., Montone, A., Grbovic, J., Vittori, M. Antisari, Eur. Phys. J. B, 43 (2005) 19.CrossRefGoogle Scholar
11. Hanada, N., Ichikawa, T., Fujii, H., J. Phys. Chem B, 109 (2005) 7188.CrossRefGoogle Scholar
12. Barkhordarian, G., Klassen, T., Bormann, R., J. Alloy Compd., 407 (2006) 249.CrossRefGoogle Scholar
13. Bazzanella, N., Checchetto, R., Miotello, A., Sada, G., Mazzoldi, P., Mengucci, P., Appl. Phys. Lett., 89 (2006) 014101.CrossRefGoogle Scholar
14. Montone, A., Grbovic Novakovic, J., Vittori Antisari, M., Bassetti, A., Bonetti, E., Fiorini, A.L., Mirenghi, L., Rotolo, P., Int. J. Hydrogen Energy (2007).Google Scholar
15.URL: http://www.cantil.itGoogle Scholar
16. Schroder, E., Fasel, R., Kiejna, , Phys. Rev. B, 69 (2004) 193405.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

MgH2 by Gas Phase Condensation: Nanostructure Morphology and Hydrogen Sorption Behaviour
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

MgH2 by Gas Phase Condensation: Nanostructure Morphology and Hydrogen Sorption Behaviour
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

MgH2 by Gas Phase Condensation: Nanostructure Morphology and Hydrogen Sorption Behaviour
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *